35 research outputs found

    Assessment of databases to determine the validity of beta- and gamma-carbonic anhydrase sequences from vertebrates

    Get PDF
    BackgroundThe inaccuracy of DNA sequence data is becoming a serious problem, as the amount of molecular data is multiplying rapidly and expectations are high for big data to revolutionize life sciences and health care. In this study, we investigated the accuracy of DNA sequence data from commonly used databases using carbonic anhydrase (CA) gene sequences as generic targets. CAs are ancient metalloenzymes that are present in all unicellular and multicellular living organisms. Among the eight distinct families of CAs, including alpha, beta, gamma, delta, zeta, eta, theta, and iota, only alpha -CAs have been reported in vertebrates.ResultsBy an in silico analysis performed on the NCBI and Ensembl databases, we identified several beta- and gamma -CA sequences in vertebrates, including Homo sapiens, Mus musculus, Felis catus, Lipotes vexillifer, Pantholops hodgsonii, Hippocampus comes, Hucho hucho, Oncorhynchus tshawytscha, Xenopus tropicalis, and Rhinolophus sinicus. Polymerase chain reaction (PCR) analysis of genomic DNA persistently failed to amplify positive beta- or gamma -CA gene sequences when Mus musculus and Felis catus DNA samples were used as templates. Further BLAST homology searches of the database-derived "vertebrate" beta- and gamma -CA sequences revealed that the identified sequences were presumably derived from gut microbiota, environmental microbiomes, or grassland ecosystems.ConclusionsOur results highlight the need for more accurate and fast curation systems for DNA databases. The mined data must be carefully reconciled with our best knowledge of sequences to improve the accuracy of DNA data for publication.Peer reviewe

    Ascaris lumbricoides β carbonic anhydrase: A potential target enzyme for treatment of ascariasis

    Get PDF
    BACKGROUND: A parasitic roundworm, Ascaris lumbricoides, is the causative agent of ascariasis, with approximately 760 million cases around the world. Helminthic infections occur with a high prevalence mostly in tropical and developing xcountries. Therefore, design of affordable broad-spectrum anti-helminthic agents against a variety of pathogens, including not only A. lumbricoides but also hookworms and whipworms, is desirable. Beta carbonic anhydrases (β-CAs) are considered promising targets of novel anthelminthics because these enzymes are present in various parasites, while completely absent in vertebrates. METHODS: In this study, we identified an A. lumbricoides β-CA (AIBCA) protein from protein sequence data using bioinformatics tools. We used computational biology resources and methods (including InterPro, CATH/Gene3D, KEGG, and METACYC) to analyze AlBCA and define potential roles of this enzyme in biological pathways. The AlBCA gene was cloned into pFastBac1, and recombinant AIBCA was produced in sf-9 insect cells. Kinetics of AlBCA were analyzed by a stopped-flow method. RESULTS: Multiple sequence alignment revealed that AIBCA contains the two sequence motifs, CXDXR and HXXC, typical for β-CAs. Recombinant AIBCA showed significant CA catalytic activity with k(cat) of 6.0 × 10(5) s(−1) and k(cat)/K(M) of 4.3 × 10(7) M(−1) s(−1). The classical CA inhibitor, acetazolamide, showed an inhibition constant of 84.1 nM. Computational modeling suggests that the molecular architecture of AIBCA is highly similar to several other known β-CA structures. Functional predictions suggest that AIBCA might play a role in bicarbonate-mediated metabolic pathways, such as gluconeogenesis and removal of metabolically produced cyanate. CONCLUSIONS: These results open new avenues to further investigate the precise functions of β-CAs in parasites and suggest that novel β-CA specific inhibitors should be developed and tested against helminthic diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-015-1098-5) contains supplementary material, which is available to authorized users

    Identification and inhibition of carbonic anhydrases from nematodes.

    Get PDF
    Carbonic anhydrases (CAs) are metalloenzymes, and classified into the evolutionarily distinct α, β, γ, δ, ζ, and η classes. α-CAs are present in many living organisms. β- and γ-CAs are expressed in most prokaryotes and eukaryotes, except for vertebrates. δ- and ζ-CAs are present in phytoplanktons, and η-CAs have been found in Plasmodium spp. Since the identification of α- and β-CAs in Caenorhabditis elegans, the nematode CAs have been considered as an emerging target in research focused on antiparasitic CA inhibitors. Despite the presence of α-CAs in both helminths and vertebrates, structural studies have revealed different kinetic and inhibition results. Moreover, lack of β-CAs in vertebrates makes this enzyme as an attractive target for inhibitory studies against helminthic infection. Some CA inhibitors, such as sulfonamides, have been evaluated against nematode CAs. This review article aims to present comprehensive information about the nematode CAs and their inhibitors as potential anthelminthic drugs

    Morphological Description, Phylogenetic and Molecular Analysis of Dirofilaria immitis Isolated from Dogs in the Northwest of Iran

    Get PDF
    Background: Dirofilariasis is a globally distributed arthropod-borne parasitic disease of mainly canids and felids. We evaluated to extend the knowledge of morpho-molecular characteristics and outer ultrastructure of Dirofilaria immitis isolated from Northwest of Iran. Methods: Overall, 67 filarial worms including 41 females and 26 males parasites were collected from the cardiovascular system of the 43 stray dogs in Meshkinshar, Ardebil Province, Northwest of Iran in 2017, and subjected to light and scanning electron microscopy (SEM) as well as carmine alum staining for morpho-molecular and identification. Molecular methods were used for confirmation of morphological findings by sequencing of Cyto-chrome c oxidase subunit I (cox1) gene. Results: The partial DNA sequencing of cox1 gene of adult parasites showed considerable homology and close proximity to the previously isolated from Kerman and Meshkinshahr, Iran. The lowest genetic variation and the highest intra-species variability was found in D. immitis and Dirofilaria repens, respectively. No similarity was identified between D. immitis nucleotide sequence and Wolbachia species as its endosymbiont bacteria. Conclusion: The SEM technique is an excellent tool for differential recognition of the parasite surface morphology and molecular techniques could differentiate and identify Dirofilaria spp. keywords: Dirofilaria immitis, Homology, Iran, Scanning electron microscopy (SEM

    Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans

    Get PDF
    Background Despite the high prevalence of parasitic infections, and their impact on global health and economy, the number of drugs available to treat them is extremely limited. As a result, the potential consequences of large-scale resistance to any existing drugs are a major concern. A number of recent investigations have focused on the effects of potential chemical inhibitors on bacterial and fungal carbonic anhydrases. Among the five classes of carbonic anhydrases (alpha, beta, gamma, delta and zeta), beta carbonic anhydrases have been reported in most species of bacteria, yeasts, algae, plants, and particular invertebrates (nematodes and insects). To date, there has been a lack of knowledge on the expression and molecular structure of beta carbonic anhydrases in metazoan (nematodes and arthropods) and protozoan species. Methods Here, the identification of novel beta carbonic anhydrases was based on the presence of the highly-conserved amino acid sequence patterns of the active site. A phylogenetic tree was constructed based on codon-aligned DNA sequences. Subcellular localization prediction for each identified invertebrate beta carbonic anhydrase was performed using the TargetP webserver. Results We verified a total of 75 beta carbonic anhydrase sequences in metazoan and protozoan species by proteome-wide searches and multiple sequence alignment. Of these, 52 were novel, and contained highly conserved amino acid residues, which are inferred to form the active site in beta carbonic anhydrases. Mitochondrial targeting peptide analysis revealed that 31 enzymes are predicted with mitochondrial localization; one was predicted to be a secretory enzyme, and the other 43 were predicted to have other undefined cellular localizations. Conclusions These investigations identified 75 beta carbonic anhydrases in metazoan and protozoan species, and among them there were 52 novel sequences that were not previously annotated as beta carbonic anhydrases. Our results will not only change the current information in proteomics and genomics databases, but will also suggest novel targets for drugs against parasites.BioMed Central open acces

    Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry

    Get PDF
    BACKGROUND: The genomes of many insect and parasite species contain beta carbonic anhydrase (&beta;-CA) protein coding sequences. The lack of &beta;-CA proteins in mammals makes them interesting target proteins for inhibition in treatment of some infectious diseases and pests. Many insects and parasites represent important pests for agriculture and cause enormous economic damage worldwide. Meanwhile, pollution of the environment by old pesticides, emergence of strains resistant to them, and their off-target effects are major challenges for agriculture and society. METHODS: In this study, we analyzed a multiple sequence alignment of 31 &beta;-CAs from insects, some parasites, and selected plant species relevant to agriculture and livestock husbandry. Using bioinformatics tools a phylogenetic tree was generated and the subcellular localizations and antigenic sites of each protein were predicted. Structural models for &beta;-CAs of Ancylostoma caninum, Ascaris suum, Trichinella spiralis, and Entamoeba histolytica, were built using Pisum sativum and Mycobacterium tuberculosis &beta;-CAs as templates. RESULTS: Six &beta;-CAs of insects and parasites and six &beta;-CAs of plants are predicted to be mitochondrial and chloroplastic, respectively, and thus may be involved in important metabolic functions. All 31 sequences showed the presence of the highly conserved &beta;-CA active site sequence motifs, CXDXR and HXXC (C: cysteine, D: aspartic acid, R: arginine, H: histidine, X: any residue). We discovered that these two motifs are more antigenic than others. Homology models suggested that these motifs are mostly buried and thus not well accessible for recognition by antibodies. CONCLUSIONS: The predicted mitochondrial localization of several &beta;-CAs and hidden antigenic epitopes within the protein molecule, suggest that they may not be considered major targets for vaccines. Instead, they are promising candidate enzymes for small-molecule inhibitors which can easily penetrate the cell membrane. Based on current knowledge, we conclude that &beta;-CAs are potential targets for development of small molecule pesticides or anti-parasitic agents with minimal side effects on vertebrates.</p

    Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry

    Get PDF
    Abstract BACKGROUND: The genomes of many insect and parasite species contain beta carbonic anhydrase (β-CA) protein coding sequences. The lack of β-CA proteins in mammals makes them interesting target proteins for inhibition in treatment of some infectious diseases and pests. Many insects and parasites represent important pests for agriculture and cause enormous economic damage worldwide. Meanwhile, pollution of the environment by old pesticides, emergence of strains resistant to them, and their off-target effects are major challenges for agriculture and society. METHODS: In this study, we analyzed a multiple sequence alignment of 31 β-CAs from insects, some parasites, and selected plant species relevant to agriculture and livestock husbandry. Using bioinformatics tools a phylogenetic tree was generated and the subcellular localizations and antigenic sites of each protein were predicted. Structural models for β-CAs of Ancylostoma caninum, Ascaris suum, Trichinella spiralis, and Entamoeba histolytica, were built using Pisum sativum and Mycobacterium tuberculosis β-CAs as templates. RESULTS: Six β-CAs of insects and parasites and six β-CAs of plants are predicted to be mitochondrial and chloroplastic, respectively, and thus may be involved in important metabolic functions. All 31 sequences showed the presence of the highly conserved β-CA active site sequence motifs, CXDXR and HXXC (C: cysteine, D: aspartic acid, R: arginine, H: histidine, X: any residue). We discovered that these two motifs are more antigenic than others. Homology models suggested that these motifs are mostly buried and thus not well accessible for recognition by antibodies. CONCLUSIONS: The predicted mitochondrial localization of several β-CAs and hidden antigenic epitopes within the protein molecule, suggest that they may not be considered major targets for vaccines. Instead, they are promising candidate enzymes for small-molecule inhibitors which can easily penetrate the cell membrane. Based on current knowledge, we conclude that β-CAs are potential targets for development of small molecule pesticides or anti-parasitic agents with minimal side effects on vertebratesBioMed Central open acces

    Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans

    Get PDF
    BACKGROUND: Despite the high prevalence of parasitic infections, and their impact on global health and economy, the number of drugs available to treat them is extremely limited. As a result, the potential consequences of large-scale resistance to any existing drugs are a major concern. A number of recent investigations have focused on the effects of potential chemical inhibitors on bacterial and fungal carbonic anhydrases. Among the five classes of carbonic anhydrases (alpha, beta, gamma, delta and zeta), beta carbonic anhydrases have been reported in most species of bacteria, yeasts, algae, plants, and particular invertebrates (nematodes and insects). To date, there has been a lack of knowledge on the expression and molecular structure of beta carbonic anhydrases in metazoan (nematodes and arthropods) and protozoan species. METHODS: Here, the identification of novel beta carbonic anhydrases was based on the presence of the highly-conserved amino acid sequence patterns of the active site. A phylogenetic tree was constructed based on codon-aligned DNA sequences. Subcellular localization prediction for each identified invertebrate beta carbonic anhydrase was performed using the TargetP webserver. RESULTS: We verified a total of 75 beta carbonic anhydrase sequences in metazoan and protozoan species by proteome-wide searches and multiple sequence alignment. Of these, 52 were novel, and contained highly conserved amino acid residues, which are inferred to form the active site in beta carbonic anhydrases. Mitochondrial targeting peptide analysis revealed that 31 enzymes are predicted with mitochondrial localization; one was predicted to be a secretory enzyme, and the other 43 were predicted to have other undefined cellular localizations. CONCLUSIONS: These investigations identified 75 beta carbonic anhydrases in metazoan and protozoan species, and among them there were 52 novel sequences that were not previously annotated as beta carbonic anhydrases. Our results will not only change the current information in proteomics and genomics databases, but will also suggest novel targets for drugs against parasites.</p
    corecore