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validity of β- and γ-carbonic anhydrase
sequences from vertebrates
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Abstract

Background: The inaccuracy of DNA sequence data is becoming a serious problem, as the amount of molecular
data is multiplying rapidly and expectations are high for big data to revolutionize life sciences and health care. In
this study, we investigated the accuracy of DNA sequence data from commonly used databases using carbonic
anhydrase (CA) gene sequences as generic targets. CAs are ancient metalloenzymes that are present in all
unicellular and multicellular living organisms. Among the eight distinct families of CAs, including α, β, γ, δ, ζ, η, θ,
and ι, only α-CAs have been reported in vertebrates.

Results: By an in silico analysis performed on the NCBI and Ensembl databases, we identified several β- and γ-CA
sequences in vertebrates, including Homo sapiens, Mus musculus, Felis catus, Lipotes vexillifer, Pantholops hodgsonii,
Hippocampus comes, Hucho hucho, Oncorhynchus tshawytscha, Xenopus tropicalis, and Rhinolophus sinicus.
Polymerase chain reaction (PCR) analysis of genomic DNA persistently failed to amplify positive β- or γ-CA gene
sequences when Mus musculus and Felis catus DNA samples were used as templates. Further BLAST homology
searches of the database-derived “vertebrate” β- and γ-CA sequences revealed that the identified sequences were
presumably derived from gut microbiota, environmental microbiomes, or grassland ecosystems.

Conclusions: Our results highlight the need for more accurate and fast curation systems for DNA databases. The
mined data must be carefully reconciled with our best knowledge of sequences to improve the accuracy of DNA
data for publication.

Keywords: Carbonic anhydrase, Contamination, Curation, Database, DNA, Sequencing

Background
Carbonic anhydrases (CAs) are metalloenzymes that are
classified into eight evolutionarily distinct families, in-
cluding α, β, γ, δ, ζ, η, θ, and ι [1–4]. These enzymes
catalyze the hydration of carbon dioxide to bicarbonate
and protons and are involved in various biochemical
pathways, such as gluconeogenesis, ureagenesis and
photosynthesis, and other physiological functions, such

as pH homeostasis, electrolyte transfer and calcification
[5].
There are 12 α-CA isozymes, including CA I-IV, CA

VA and VB, CA VI, CA VII, CA IX, and CA XII-XIV,
that are expressed in humans [6]. Interestingly, CA XV
is the only active CA isozyme known to date that is
expressed in several vertebrate species but is lost in hu-
man and chimpanzee genomes [7]. In addition to the 13
mammalian α-CA isozymes, there are three acatalytic
CA-related proteins (CARPs), including CARP VIII,
CARP X, and CARP XI, with crucial physiological roles
[8–11]. α-CAs have been reported from many organ-
isms, including both prokaryotes and eukaryotes [12].
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Although β-CAs are present in archaea, bacteria,
plants, fungi, protozoans, and insects, there are no re-
ports of β-CAs in any vertebrate species [13, 14]. Simi-
larly, γ-CAs are present in many prokaryotes and
eukaryotes, such as plants and fungi, whereas they do
not exist in any vertebrates according to the current
knowledge [15, 16]. Incomplete β-CA gene sequences
have been identified in the genome of the cephalochord-
ate Branchiostoma floridae (the Florida lancelet), but
whether they represent a pseudogene or an incompletely
sequenced active gene has not been determined [17].
Some annotated β- and γ-CA sequences present in data-
bases have been linked to vertebrate genomes, but in
fact, they might have originated from either gut micro-
biota or other normal flora or even from environmental
bacterial contamination. Kraken and Taxoblast are two
recently designed ultrafast programs to identify contam-
inant DNA sequences from metagenomic and genome
sequencing databases [18, 19]. The main limitation of
both methods is the lack of accessibility to a computer
or server with enough RAM for quick operation while
performing genome blast homology searches.
In this study, we first searched for β- and γ-CAs in

vertebrates using in silico tools. The results obtained
from the NCBI and Ensemble databases led us to per-
form polymerase chain reaction (PCR) amplifications
using mouse and cat genomic DNA as templates. The
results indicated that the “vertebrate” β- and γ-CA se-
quences detected from databases were presumably de-
rived from gut microbiota, environmental microbiomes,
or grassland ecosystems. This finding emphasizes the
importance of fast and accurate biocuration of database
sequences.

Results
Identification of β- and γ-CAs
The BLASTP program from the NCBI database identi-
fied β-CA protein sequences from some vertebrates, in-
cluding Lipotes vexillifer (XP_007454654.1), Pantholops
hodgsonii (XP_005974256.1), Homo sapiens
(SJM31717.1), and Oncorhynchus tshawytscha (XP_
024266887.1). In addition, the TBLASTN program of
Ensembl genome browser 95 identified the genomic lo-
cation for a β-CA gene in M. musculus, strain NOD/
ShiLtJ (genomic location: LVXS01065484.1: 870–1430),
Hippocampus comes (genomic location: LVHJ01039623:
18–230*), and Hucho hucho (genomic location:
QNTS01034426:189–644*). The aforementioned
methods identified γ-CA protein sequences from some
vertebrates, including L. vexillifer (XP_007452618.1), P.
hodgsonii (XP_005961532.1), H. sapiens (SJM34589.1), F.
catus (XP_004001159.1), and Rhinolophus sinicus (XP_
019578089.1). Additionally, the genomic location was
identified for a γ-CA gene in Xenopus tropicalis

(genomic location: GL180697.1: 4765-5075) and H.
comes (genomic location: LVHJ01047219:4–240*) (Fig. 1
and Table 1). The multiple sequence alignment (MSA)
analysis showed that the predicted polypeptide se-
quences would contain highly conserved amino acids,
which are considered important for the classical β-CA
(Fig. 2) and γ-CA (Fig. 3) enzymes.
Our further analysis revealed that the genomic

organization of the coding genes for the “vertebrate” β-
and γ-CA proteins was consistent with the single exonic
pattern of coding genes in prokaryotes. In addition, the
BLAST homology search analysis decrypted the high
percentage of identities (73–100%) between the pre-
dicted β- and γ-CA protein sequences of vertebrates and
some other organisms, which mostly involved prokary-
otic species (Table 1).

Molecular analysis of β- and γ-CA genes from vertebrates
To investigate whether β-CA or γ-CA genes are truly
present in vertebrate genomes, we performed PCR using
DNA samples extracted from ear punching specimens of
M. musculus and whole blood of F. catus. The first
round PCRs with low stringent conditions showed some
positive signal for the primer pairs P1 and P3 of F. catus
and P5 and P8 of M. musculus (Fig. 4a). Estimation of
the PCR product size was conducted based on the prod-
uct length from Table 2. Because the signal remained
weak in most cases, we performed the second round
PCR using the PCR amplicons from the first round PCR
as templates. The results of the second round of PCR
are shown in Fig. 4b. The sequencing results revealed
that none of the sequenced PCR products represented
the predicted β-CA gene from M. musculus or the γ-CA
gene from F. catus.

Discussion
CA genes are widely distributed in species of all life
kingdoms. Despite this general concept, β- and γ-CA
genes have never been reported in vertebrate genomes
to the best of our knowledge based on previous litera-
ture. Our survey on the β- and γ-CA gene sequences of
vertebrates presented in public databases in 2017–2020
revealed, however, that some sequences were or are still
available, such as β-CA genes from L. vexillifer and M.
musculus, as well as γ-CA genes from L. vexillifer. Some
data were removed in 2019–2020, such as β-CA genes
from P. hodgsonii and H. sapiens, as well as γ-CA genes
from P. hodgsonii, X. tropicalis, H. sapiens, F. catus, and
R. sinicus. Some new sequences appeared and were an-
notated on databases in 2019–2020, including β-CA
genes from H. comes, H. hucho, and O. tshawytscha, as
well as the γ-CA gene from H. comes. At first glance, the
reports of “vertebrate” β- and γ-CA genes in databases
raised our interest as a potentially novel discovery, but
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Fig. 1 Predicted genomic location of (a) a β-CA gene in Mus musculus, strain NOD/ShiLtJ (scaffold LVXS01065484.1: 870–1430) and (b) a γ-CA
gene in Xenopus tropicalis (scaffold GL180697.1: 4765-5075)

Table 1 Identified β-and γ-CAs from vertebrates

Type
of
CA

NCBI IDs Vertebrate species Status in database 73–100% identical species Exon
count2017–

2018
2019–
2020

β-CA XP_007454654.1 Lipotes vexillifer (extinct Yangtze River dolphin) A A Pseudomonas sp. 1

XP_007466906.1 Acinetobacter sp.

XP_005974256.1 Pantholops hodgsonii (Tibetan antelope) A D Agrobacterium sp. Rhizobium
sp.

1

XP_005956696.1 Sphingobium sp.

XP_005973271.1 Mesorhizobium sp.

XP_005979975.1 Acinetobacter sp.

XP_005954808.1 Sphingobium sp.

LVXS01065484.1: 870–
1430a

Mus musculus, strain NOD/ShiLtJ (house mouse) A A Serratia sp. ND

SJM31717.1 Homo sapiens (Human) A D Mesorhizobium delmotii 1

LVHJ01039623:18–230a Hippocampus comesb (Tiger tail seahorse) U A Muricauda sp. (87.3%) ND

QNTS01034426:189–644a Hucho hucho (Huchen or Danube salmon) U A Flavobacterium sp. (73.7%) ND

XP_024266887.1 Oncorhynchus tshawytscha (Chinook salmon) U A Hydrogenophaga sp. 1

γ-CA XP_007452618.1 Lipotes vexillifer (extinct Yangtze River dolphin) A A Pseudomonas sp. 1

XP_007465530.1

XP_005974442.1 Pantholops hodgsonii (Tibetan antelope) A D Caulobacter sp. 1

XP_005977566.1 Delftia sp. (98%)

XP_005974267.1 Acinetobacter sp.

GL180697.1: 4765-5075a Xenopus tropicalis A D Comamonadaceae bacterium ND

SJM34589.1 Homo sapiens (Human) A D Mesorhizobium delmotii 1

XP_004001159.1 Felis catus (domestic cat) A D Acidovorax sp. (97%) 1

XP_019578089.1 Rhinolophus sinicus (Chinese rufous horseshoe
bat)

A D Brassica sp. (94%) 1

LVHJ01047219:4–240a Hippocampus comes (Tiger tail seahorse) U A Bacteroidetes bacterium
(93.7%)

ND

Abbreviations: ND Not defined, A Available, D Discontinued, U Unavailable (Supplementary file 1)
a: Genomic location in the Ensembl genome browser 95
b: The sequencing shows only the first highly conserved sequence (CXDXR)
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enthusiasm gradually dissipated as most data were dis-
continued in 2019–2020. The BLAST homology search
analysis of the predicted “vertebrate” β- and γ-CA pro-
tein sequences filtered with the “prokaryota” keyword
defined that the discontinued β- and γ-CA genes
belonged to prokaryotes. The most striking false-positive

sequences in databases were originally annotated as hu-
man β- and γ-CAs, which we defined by the BLAST
homology search as Mesorhizobium delmotii enzymes
instead of human origin (Table 1). Our results suggest
that the predicted “human” β- and γ-CAs were derived
from bacterial contamination of human DNA samples

Fig. 2 Multiple sequence alignment (MSA) of β-CA protein sequences from vertebrates. The highly conserved amino acids are shown by
highlighted vertical bands

Fig. 3 Multiple sequence alignment (MSA) of γ-CA protein sequences from vertebrates. The highly conserved amino acids are shown by
highlighted vertical bands
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that caused false interpretation during sequencing. As a
sign of improved accuracy, these false-positive data were
removed from databases in 2019–2020.
Another piece of evidence for the bacterial contamin-

ation of DNA samples is the contamination of H. comes
sample with Muricauda sp. and Bacteroides sp., both of
which are abundantly present in seawater sediments [20,
21]. In addition, DNA samples of salmon fishes (H.
hucho and O. tshawytscha) can be contaminated with
gut microbiota or egg-associated bacterial species, such
as Flavobacterium sp., Pseudomonas sp., and Hydrogeno-
phaga sp. [22, 23]. Comamonadaceae bacterium from
gut microbiota may represent the main source of bacter-
ial contamination for the DNA samples of X. tropicalis
[24]. Notably, due to the living habitat of R. sinicus in
meadows, scrubs, and grasslands and feeding in these
important ecosystems, the contamination of the bat
DNA sample was mainly derived from plant species,
such as Brassica sp. (cruciferous vegetables), instead of
contamination from gut microbiota.
The exon count of the predicted “vertebrate” β- and γ-

CA genes suggested the presence of only a single exon
in each case. This finding also supported the idea that
prokaryotes from gut microbiota and environmental
microbiome are the major source of contaminants that
led to unexpected sequencing results from vertebrate
DNA samples [25]. This idea was further supported by
our PCR analysis of both mouse and cat genomic DNA
samples combined with DNA sequencing, which consist-
ently failed to identify any β- or γ-CA sequences in mice
and cats.

Fig. 4 PCR analysis of the γ-CA gene from F. catus and β-CA gene
from M. musculus. Samples from two animals of both species were
included in the analysis, and primer pairs P1, P3, P5, and P8 were
selected based on preliminary experiments. a shows the results from
the first round of PCR. The bands nearest to the estimated correct
size (red arrows) are marked with red circles (1–9). These bands were
isolated, and the purified DNAs were used as templates for the
second round of PCR. The results are shown in b. The amplified
products from samples 3, 4, 8, and 9 were subsequently subjected
to DNA sequencing

Table 2 Designed primers for the β- and γ-CA genes

CA family Vertebrate species Primer pairs Product length (bp)

γ-CA Felis catus (cat) P1 Forward: 5′- AGATAACTACTTCACATCTGACA −3’ 1089

Reverse: 3′- ATACAGGGCTGGGTGCCT −5’

P2 Forward: 5′- GGTGATTGGCGACTACGTGA − 3’ 625

Reverse: 3′- CTCAGTCGGTTAGGTGGCTG − 5’

P3 Forward: 5′- GCGCGTGAAGAACAACTACC − 3’ 217

Reverse: 3′- GTGTTCAGTTGCGTCATCGG − 5’

P4 Forward: 5′- AAGCGGCAACCTCTACATCG −3’ 341

Reverse: 3′- CGTGAGGTAGGCAGTAGACG −5’

β-CA Mus musculus (Mouse) P5 Forward: 5′- TGATAATGCCGATGGTCGTG −3’ 1023

Reverse: 3′- AGTAGCCATGGCCTTGCGAT −5’

P6 Forward: 5′- TGGATTTTCCGGCACCGTTA −3’ 441

Reverse: 3′- CGGGTCTTCCTTGCTGATGT −5’

P7 Forward: 5′- ACATCAGCAAGGAAGACCCG −3’ 391

Reverse: 3′- CACAATACGTCAAGGCGCTG −5’

P8 Forward: 5′- GCTGCACATCCGTGATCTCT −3’ 191

Reverse: 3′- GGATCCCATACACCCAACCG −5’

Zolfaghari Emameh et al. BMC Genomics          (2020) 21:352 Page 5 of 8



It is clear that a significant amount of incorrect se-
quence data on both β-CA and γ-CA genes remain in
public databases. Some existing examples are β-CA
genes of L. vexillifer, M. musculus, H. comes, H. hucho,
and O. tshawytscha and γ-CA genes of L. vexillifer and
H. comes. The present findings highlight the importance
of database curation efforts to achieve a higher degree of
accuracy within a shorter revision time.

Conclusions
Online databases are important sources of information
for mining genomic and proteomic data of living organ-
isms. Unfortunately, these databases also include misan-
notated data to some extent due to microbial or other
contamination. We used β- and γ-CA gene sequences as
bioinformatic tools to demonstrate such contamination
in various species. Our findings emphasize the import-
ance of fast and reliable curation for achieving better-
quality and more accurate genomic and proteomic data.

Methods
Identification of β- and γ-CAs
In the first step, the β- and γ-CA protein sequences
from Escherichia coli (NCBI IDs: WP_000658644.1 and
WP_131199889.1, respectively) were used as the query
in the Basic local alignment search tool (BLAST) for se-
quence similarity search analysis through the BLASTP
program (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=
Proteins) of NCBI database [26] and TBLASTN program
of Ensembl genome browser 95 (https://asia.ensembl.
org/Multi/Tools/Blast?db=core) [27]. We filtered the re-
sults using “vertebrata” as the organism name, in which
the BLASTP program only searched for β- and γ-CA
protein sequences within vertebrates. Additionally, we
applied the scientific name of defined vertebrates as the
filter in the TBLASTN program of Ensembl genome
browser 95. The obtained β- and γ-CA protein se-
quences were aligned using the Clustal Omega algorithm
(https://www.ebi.ac.uk/Tools/msa/clustalo/) [28].
In the second step, we performed a BLAST homology

search analysis on the obtained β- and γ-CA protein se-
quences from vertebrates, in which the results were fil-
tered against “prokaryota” as the organism name.
Afterward, exon counts were performed to detect β- and
γ-CA gene sequences from vertebrates through the gene
analysis program of the NCBI database.

Molecular analysis of β- and γ-CA genes from vertebrates
We designed eight primer pairs using Primer-BLAST for
molecular detection of the β-CA gene from Mus muscu-
lus (Mouse) and the γ-CA gene from Felis catus (cat)
(four primer pairs for each CA gene) identified through
bioinformatic methods (Table 2) [29].

The ear blood samples of one M. musculus and 1ml
EDTA-blood samples of one privately-owned F. catus
were collected under the permission of the animal eth-
ical committee of the County Administrative Board of
Southern Finland (ESAVI/8321/04.10.07/2017 for the
mouse and ESAVI/7482/04.10.07/2015 for the cat) for
molecular detection of the predicted β-CA gene of M.
musculus and γ-CA gene of F. catus. In the Tampere
University’s animal facility, mice are routinely earmarked
and the same samples were used for genotyping pur-
poses in another project. Written consents were col-
lected from the participating cat owners and samples
were collected as a part of the ongoing feline genetic re-
search at Dr. Lohi’s laboratory. Cats visited a veterinary
clinic for a routine sample collection. Genomic DNA
was extracted from white blood cells using a semiauto-
mated Chemagen extraction robot (PerkinElmer Chema-
gen Technologie GmbH, Baeswieler, Germany)
according to the manufacturer’s instructions. The DNA
concentrations were measured using a Qubit
fluorometer (Thermo Fisher Scientific, Waltham, Massa-
chusetts, USA) and a Nanodrop ND-1000 UV/Vis Spec-
trophotometer (Nanodrop Technologies, Wilmington,
Delaware, USA), and samples were stored at − 20 °C.
Polymerase chain reaction (PCR) was performed accord-
ing to the protocol used by Zolfaghari Emameh R et al.
[30]. PCR amplification was run on a thermocycler
(Bioer XP Cycler, Hangzhou Bioer Technology Co. Ltd.,
Hangzhou, China) according to the following details:
95 °C (3 min), [95 °C (15 s), 60 °C (15 s), 72 °C (15 s)] ×
40 cycles, 72 °C (2 min). The amplified products were
run on a 1.6% agarose gel and purified using a NucleoS-
pin Gel and PCR Clean-up kit (Macherey-Nagel). The
second round of PCR was run as previously described,
and the selected PCR amplicons (Fig. 4; samples 3, 4, 8,
and 9) were treated with Exo I and Fast AP enzymes and
sequenced using ABI PRISM BigDye® Terminator v3.1
Cycle Sequencing kit and 3500xL Genetic Analyzer (Ap-
plied Biosystems, Inc., Foster City, CA, U.S.A.).
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6762-2.
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