266 research outputs found

    The Risk Protection Order: Protection from Mass Homicide?

    Get PDF
    Gun control measures, referred to as “risk protection orders” or “Red Flag” laws, are expanding with widespread public support. Currently, 19 states have similar legislation, varying in procedural approaches and enforcement to reduce firearm-related homicide, emphasizing mass homicide. However, little is known about whether the legislation is effective. The following questions are presented: (1) Is there a difference between rates of firearm related homicide incidences prior to and after the creation of Florida’s “Red Flag” law? (2) Do risk protection orders target individuals demonstrating known mass homicide offender typology characteristics? The study used data derived from open-source resources. An interrupted time-series analysis was conducted to evaluate the effect of the intervention on firearm-related homicides. Data for firearms-related-homicides were obtained from the Florida Department of Law Enforcement from 1999 to 2020, while suicide data were obtained from the Bureau of Vital Statistics. The study revealed that rates of firearm-related homicides statistically significantly increased after implementing the legislation, p=.003, adj.R2=47.7%, F(3,18)=6.889. Firearm-related suicide rates, on the contrary, decreased significantly after intervention, p\u3c.001, adj.R2=65.3%, F(3,18)=14.169. Data of risk protection petitions (N =556) filed from March 2018 to March 2019 were collected from Pinellas, Broward, and Seminole counties. Bivariate analysis using a chi-squared test for association showed that statements involving intent to commit mass homicide (N=76) was negatively correlated with only one statutory variable, unlawful or reckless display of a firearm, but positively correlated with three of the added variables: (1) evidence of suicidal ideation; (2) evidence of planned revenge; and (3) evidence of precipitating factors, including strain. The fourth added variable, domestic violence, negatively correlates with the outcome

    CD46 and oncologic interactions: Friendly fire against cancer

    Get PDF
    One of the most challenging aspects of cancer therapeutics is target selection. Recently, CD46 (membrane cofactor protein; MCP) has emerged as a key player in both malignant transformation as well as in cancer treatments. Normally a regulator of complement activation, CD46 is co-expressed as four predominant isoforms on almost all cell types. CD46 is highly overexpressed on a variety of human tumor cells. Clinical and experimental data support an association between increased CD46 expression and malignant transformation and metastasizing potential. Further, CD46 is a newly discovered driver of metabolic processes and plays a role in the intracellular complement system (complosome). CD46 is also known as a pathogen magnet due to its role as a receptor for numerous microbes, including several species of measles virus and adenoviruses. Strains of these two viruses have been exploited as vectors for the therapeutic development of oncolytic agents targeting CD46. In addition, monoclonal antibody-drug conjugates against CD46 also are being clinically evaluated. As a result, there are multiple early-phase clinical trials targeting CD46 to treat a variety of cancers. Here, we review CD46 relative to these oncologic connections

    The role of the lymphatic system in cholesterol transport

    Get PDF
    Reverse cholesterol transport (RCT) is the pathway for removal of peripheral tissue cholesterol and involves transport of cholesterol back to liver for excretion, starting from cellular cholesterol efflux facilitated by lipid-free apolipoprotein A1 (ApoA1) or other high-density lipoprotein (HDL) particles within the interstitial space. Extracellular cholesterol then is picked up and transported through the lymphatic vasculature before entering into bloodstream. There is increasing evidence supporting a role for enhanced macrophage cholesterol efflux and RCT in ameliorating atherosclerosis, and recent data suggest that these processes may serve as better diagnostic biomarkers than plasma HDL levels. Hence, it is important to better understand the processes governing ApoA1 and HDL influx into peripheral tissues from the bloodstream, modification and facilitation of cellular cholesterol removal within the interstitial space, and transport through the lymphatic vasculature route. New findings will complement therapeutic strategies for the treatment of atherosclerotic vascular disease

    A C3(H20) recycling pathway is a component of the intracellular complement system

    Get PDF
    An intracellular complement system (ICS) has recently been described in immune and nonimmune human cells. This system can be activated in a convertase-independent manner from intracellular stores of the complement component C3. The source of these stores has not been rigorously investigated. In the present study, Western blotting identified a band corresponding to C3 in freshly isolated human peripheral blood cells that was absent in corresponding cell lines. One difference between native cells and cell lines was the time absent from a fluid-phase complement source; therefore, we hypothesized that loading C3 from plasma was a route of establishing intracellular C3 stores. We found that many types of human cells specifically internalized C3(H(2)O), the hydrolytic product of C3, and not native C3, from the extracellular milieu. Uptake was rapid, saturable, and sensitive to competition with unlabeled C3(H(2)O), indicating a specific mechanism of loading. Under steady-state conditions, approximately 80% of incorporated C3(H(2)O) was returned to the extracellular space. These studies identify an ICS recycling pathway for C3(H(2)O). The loaded C3(H(2)O) represents a source of C3a, and its uptake altered the cytokine profile of activated CD4(+) T cells. Importantly, these results indicate that the impact of soluble plasma factors should be considered when performing in vitro studies assessing cellular immune function

    The complement system in COVID-19: Friend and foe?

    Get PDF
    Coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in a global pandemic and a disruptive health crisis. COVID-19-related morbidity and mortality have been attributed to an exaggerated immune response. The role of complement activation and its contribution to illness severity is being increasingly recognized. Here, we summarize current knowledge about the interaction of coronaviruses with the complement system. We posit that (a) coronaviruses activate multiple complement pathways; (b) severe COVID-19 clinical features often resemble complementopathies; (c) the combined effects of complement activation, dysregulated neutrophilia, endothelial injury, and hypercoagulability appear to be intertwined to drive the severe features of COVID-19; (d) a subset of patients with COVID-19 may have a genetic predisposition associated with complement dysregulation; and (e) these observations create a basis for clinical trials of complement inhibitors in life-threatening illness

    Limited Macrophage Positional Dynamics in Progressing or Regressing Murine Atherosclerotic PlaquesBrief Report

    Get PDF
    Objective Macrophages play important roles in the pathogenesis of atherosclerosis, but their dynamics within plaques remain obscure. We aimed to quantify macrophage positional dynamics within progressing and regressing atherosclerotic plaques. Approach and Results In a stable intravital preparation, large asymmetrical foamy macrophages in the intima of carotid artery plaques were sessile, but smaller rounded cells nearer plaque margins, possibly newly recruited monocytes, mobilized laterally along plaque borders. Thus, to test macrophage dynamics in plaques over a longer period of time in progressing and regressing disease, we quantified displacement of nondegradable phagocytic particles within macrophages for up to 6 weeks. In progressing plaques, macrophage-associated particles appeared to mobilize to deeper layers in plaque, whereas in regressing plaques, the label was persistently located near the lumen. By measuring the distance of the particles from the floor of the plaque, we discovered that particles remained at the same distance from the floor regardless of plaque progression or regression. The apparent deeper penetration of labeled cells in progressing conditions could be attributed to monocyte recruitment that generated new superficial layers of macrophages over the labeled phagocytes. Conclusion: s Although there may be individual exceptions, as a population, newly differentiated macrophages fail to penetrate significantly deeper than the limited depth they reside on initial entry, regardless of plaque progression, or regression. These limited dynamics may prevent macrophages from escaping areas with unfavorable conditions (such as hypoxia) and pose a challenge for newly recruited macrophages to clear debris through efferocytosis deep within plaque

    B-1 Cell Heterogeneity and the Regulation of Natural and Antigen-Induced IgM Production.

    Get PDF
    A small subset of B cells, termed B-1 cells, with developmental origins, phenotypes, and functions that are distinct from those of conventional B cells exist in mice. It contributes the vast majority of spontaneously produced "natural" IgM. Natural IgM is constitutively produced, even in the absence of microbiota, and fulfills many distinct functions in tissue homeostasis and host defense. B-1 cells also respond with IgM production to innate signals and pathogen exposure, while maintaining steady-state levels natural IgM. Thus, within the B-1 cell pool, cells of distinct and heterogeneous functionality must exist to facilitate these different functions. This review considers three factors that may contribute to this heterogeneity: first, developmental differences regarding the origins of the precursors, second, tissue-specific signals that may differentially affect B-1 cells in the tissue compartments, and finally responsiveness to self-antigens as well as innate and antigen-specific signals. All three are likely to shape the repertoire and responsiveness of B-1 cells to homeostatic- and antigen-induced signals and thus contribute to the functional heterogeneity among these innate-like B cells
    • …
    corecore