65 research outputs found

    Combining population genomics and ecological niche modeling to assess taxon limits between Carex jemtlandica and C. lepidocarpa

    Get PDF
    Carex section Ceratocystis (Cyperaceae) is a group of recently evolved plant species, in which hybridization is frequent, introgression is documented, taxonomy is complex, and morphological boundaries are vague. Within this section, a unified taxonomic treatment of the Carex jemtlandica-Carex lepidocarpa species complex does not exist, and Norway may currently be the sole country accepting species rank for both. Carex jemtlandica is mainly confined to Fennoscandia and is thus a Fennoscandian conservation responsibility. This motivated us to test the principal hypothesis that both C. jemtlandica and C. lepidocarpa represent evolutionary significant units, and that both deserve their current recognition at species level. We investigated their evolutionary distinctiveness in Norway, using restriction site-associated DNA sequencing and ecological niche modeling. Our genomic results reveal two genetic clusters, largely corresponding to C. jemtlandica and C. lepidocarpa that also remain distinct in sympatry, despite clear indications of ongoing hybridization and introgression. The ecological niche modeling suggests that they occupy different environmental niches. Jointly, our results clearly show that C. jemtlandica and C. lepidocarpa represent separately evolving entities that should qualify recognition as evolutionary significant units. Given the high level of introgression compared to other hybridizing species pairs in Carex we recommend treating C. jemtlandica as a subspecies of C. lepidocarpa.Peer reviewe

    Past Arctic aliens have passed away, current ones may stay

    Get PDF
    Published version. Source at http://doi.org/10.1007/s10530-015-0937-9.Increased human activity and climate change are expected to increase the numbers and impact of alien species in the Arctic, but knowledge of alien species is poor in most Arctic regions. Through field investigations over the last 10 years, and review of alien vascular plant records for the high Arctic Archipelago Svalbard over the past 130 years, we explored long term trends in persistence and phenology. In total, 448 observations of 105 taxa have been recorded from 28 sites. Recent surveys at 18 of these sites revealed that alien species had disappeared at half of them. Investigations at a further 49 sites characterised by former human activity and/or current tourist landing sites did not reveal any alien species. Patterns of alien species distribution suggest that greater alien species richness is more likely to be aligned with ongoing human inhabitation than sites of transient use. The probability of an alien species being in a more advanced phenological stage increased with higher mean July temperatures. As higher mean July temperatures are positively correlated with more recent year, the latter finding suggests a clear warming effect on the increased reproductive potential of alien plants, and thus an increased potential for spread in Svalbard. Given that both human activity and temperatures are expected to increase in the future, there is need to respond in policy and action to reduce the potential for further alien species introduction and spread in the Arctic

    Botaniske undersøkelser i Rien-Hyllingen-området, Røros, Sør-Trøndelag

    No full text

    Botaniske verneverdier i Røros, Sør-Trøndelag

    No full text

    Seedling recruitment in subalpine grassland forbs: Predicting field regeneration behaviour from lab germination responses

    No full text
    Environmental cueing that restricts seed germination onto times and places where mortality risk is relatively low may have considerable selective advantage. The predictive power of lab germination responses for field regeneration behaviour is rarely tested. We screened 11 alpine grassland forbs for germination behaviours predictive of microsite and seasonal selectivity, and seed carry-over across years. The predictions were tested in a field experiment. Germination in the lab ranged from 0.05% to 67.9%, and was affected by light (5 species), temperature (6), fluctuating temperatures (4), moist chilling prior to germination (cold-stratification) (6), and dormancy-breaking by means of gibberellic acid (8). Seedling emergence in the field varied from 0.1% to 14.1%, and increased in low-competition microsites (bare-ground gaps and cut vegetation; 7 species), and showed seasonal timing (1 in autumn and 1 in spring), and seed carry-over across years (7). Lab germination responses successfully predicted microsite selectivity in the field and to some extent seed carry-over across years but not seasonal timing of germination. Gap-detecting species were generally small-seeded, low-growing, and found in unproductive habitats. Larger-seeded species germinated in all microsites but experienced increased mortality in high-competition microsites. Seed carry-over across years was lower in alpine specialists than in more widely-distributed species.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    A NEW SPECIES AND TWO NEW COMBINATIONS IN POTENTILLA SECT. NIVEAE (ROSACEAE)

    No full text
    Volume: 1Start Page: 811End Page: 81
    corecore