1,703 research outputs found

    Dissipative and nonaxisymmetric standard-MRI in Kepler disks

    Full text link
    Deviations from axial symmetry are necessary to maintain self-sustained MRI-turbulence. We define the parameters region where nonaxisymmetric MRI is excited and study dependence of the unstable modes structure and growth rates on the relevant parameters. We solve numerically the linear eigenvalue problem for global axisymmetric and nonaxisymmetric modes of standard-MRI in Keplerian disks with finite diffusion. For small magnetic Prandtl number the microscopic viscosity completely drops out from the analysis so that the stability maps and the growth rates expressed in terms of the magnetic Reynolds number Rm and the Lundquist number S do not depend on the magnetic Prandtl number Pm. The minimum magnetic field for onset of nonaxisymmetric MRI grows with Rm. For given S all nonaxisymmetric modes disappear for sufficiently high Rm. This behavior is a consequence of the radial fine-structure of the nonaxisymmetric modes resulting from the winding effect of differential rotation. It is this fine-structure which presents severe resolution problems for the numerical simulation of MRI at large Rm. For weak supercritical magnetic fields only axisymmetric modes are unstable. Nonaxisymmetric modes need stronger fields and not too fast rotation. If Pm is small its real value does not play any role in MRI.Comment: 4 pages, 6 figures, A&A Lette

    Helicity and alpha-effect by current-driven instabilities of helical magnetic fields

    Full text link
    Helical magnetic background fields with adjustable pitch angle are imposed on a conducting fluid in a differentially rotating cylindrical container. The small-scale kinetic and current helicities are calculated for various field geometries, and shown to have the opposite sign as the helicity of the large-scale field. These helicities and also the corresponding α\alpha-effect scale with the current helicity of the background field. The α\alpha-tensor is highly anisotropic as the components αϕϕ\alpha_{\phi\phi} and αzz\alpha_{zz} have opposite signs. The amplitudes of the azimuthal α\alpha-effect computed with the cylindrical 3D MHD code are so small that the operation of an αΩ\alpha\Omega dynamo on the basis of the current-driven, kink-type instabilities of toroidal fields is highly questionable. In any case the low value of the α\alpha-effect would lead to very long growth times of a dynamo in the radiation zone of the Sun and early-type stars of the order of mega-years.Comment: 6 pages, 7 figures, submitted to MNRA

    Self-Pulsating Semiconductor Lasers: Theory and Experiment

    Get PDF
    We report detailed measurements of the pump-current dependency of the self-pulsating frequency of semiconductor CD lasers. A distinct kink in this dependence is found and explained using rate-equation model. The kink denotes a transition between a region where the self-pulsations are weakly sustained relaxation oscillations and a region where Q-switching takes place. Simulations show that spontaneous emission noise plays a crucial role for the cross-over.Comment: Revtex, 16 pages, 7 figure

    A Conditional Yeast E1 Mutant Blocks the Ubiquitin–Proteasome Pathway and Reveals a Role for Ubiquitin Conjugates in Targeting Rad23 to the Proteasome

    Get PDF
    E1 ubiquitin activating enzyme catalyzes the initial step in all ubiquitin-dependent processes. We report the isolation of uba1-204, a temperature-sensitive allele of the essential Saccharomyces cerevisiae E1 gene, UBA1. Uba1-204 cells exhibit dramatic inhibition of the ubiquitin–proteasome system, resulting in rapid depletion of cellular ubiquitin conjugates and stabilization of multiple substrates. We have employed the tight phenotype of this mutant to investigate the role ubiquitin conjugates play in the dynamic interaction of the UbL/UBA adaptor proteins Rad23 and Dsk2 with the proteasome. Although proteasomes purified from mutant cells are intact and proteolytically active, they are depleted of ubiquitin conjugates, Rad23, and Dsk2. Binding of Rad23 to these proteasomes in vitro is enhanced by addition of either free or substrate-linked ubiquitin chains. Moreover, association of Rad23 with proteasomes in mutant and wild-type cells is improved upon stabilizing ubiquitin conjugates with proteasome inhibitor. We propose that recognition of polyubiquitin chains by Rad23 promotes its shuttling to the proteasome in vivo

    A finite model of two-dimensional ideal hydrodynamics

    Full text link
    A finite-dimensional su(NN) Lie algebra equation is discussed that in the infinite NN limit (giving the area preserving diffeomorphism group) tends to the two-dimensional, inviscid vorticity equation on the torus. The equation is numerically integrated, for various values of NN, and the time evolution of an (interpolated) stream function is compared with that obtained from a simple mode truncation of the continuum equation. The time averaged vorticity moments and correlation functions are compared with canonical ensemble averages.Comment: (25 p., 7 figures, not included. MUTP/92/1

    A new model of cosmogenic production of radiocarbon 14C in the atmosphere

    Full text link
    We present the results of full new calculation of radiocarbon 14C production in the Earth atmosphere, using a numerical Monte-Carlo model. We provide, for the first time, a tabulated 14C yield function for the energy of primary cosmic ray particles ranging from 0.1 to 1000 GeV/nucleon. We have calculated the global production rate of 14C, which is 1.64 and 1.88 atoms/cm2/s for the modern time and for the pre-industrial epoch, respectively. This is close to the values obtained from the carbon cycle reservoir inventory. We argue that earlier models overestimated the global 14C production rate because of outdated spectra of cosmic ray heavier nuclei. The mean contribution of solar energetic particles to the global 14C is calculated as about 0.25% for the modern epoch. Our model provides a new tool to calculate the 14C production in the Earth's atmosphere, which can be applied, e.g., to reconstructions of solar activity in the past.Comment: Published in EPSL, 337, 114, 201

    Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions

    Full text link
    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts, a) electric charges present with all material particles, b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation and c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A specific solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200

    Helicity and dynamo action in magnetized stellar radiation zones

    Full text link
    Helicity and \alpha effect driven by the nonaxisymmetric Tayler instability of toroidal magnetic fields in stellar radiation zones are computed. In the linear approximation a purely toroidal field always excites pairs of modes with identical growth rates but with opposite helicity so that the net helicity vanishes. If the magnetic background field has a helical structure by an extra (weak) poloidal component then one of the modes dominates producing a net kinetic helicity anticorrelated to the current helicity of the background field. The mean electromotive force is computed with the result that the \alpha effect by the most rapidly growing mode has the same sign as the current helicity of the background field. The \alpha effect is found as too small to drive an \alpha^{2} dynamo but the excitation conditions for an \alpha\Omega dynamo can be fulfilled for weak poloidal fields. Moreover, if the dynamo produces its own \alpha effect by the magnetic instability then problems with its sign do not arise. For all cases, however, the \alpha effect shows an extremely strong concentration to the poles so that a possible \alpha\Omega dynamo might only work at the polar regions. Hence, the results of our linear theory lead to a new topological problem for the existence of large-scale dynamos in stellar radiation zones on the basis of the current-driven instability of toroidal fields.Comment: 11 pages, 8 figures, submitted to MNRA

    Allosteric control of Ubp6 and the proteasome via a bidirectional switch

    Get PDF
    The interplay of the proteasome and deubiquitinase Ubp6 is crucial for the degradation of ubiquitylated substrates. Here, the authors provide structural insights into the allosteric mechanism by which the activities of both Ubp6 and the proteasome are regulated. The proteasome recognizes ubiquitinated proteins and can also edit ubiquitin marks, allowing substrates to be rejected based on ubiquitin chain topology. In yeast, editing is mediated by deubiquitinating enzyme Ubp6. The proteasome activates Ubp6, whereas Ubp6 inhibits the proteasome through deubiquitination and a noncatalytic effect. Here, we report cryo-EM structures of the proteasome bound to Ubp6, based on which we identify mutants in Ubp6 and proteasome subunit Rpt1 that abrogate Ubp6 activation. The Ubp6 mutations define a conserved region that we term the ILR element. The ILR is found within the BL1 loop, which obstructs the catalytic groove in free Ubp6. Rpt1-ILR interaction opens the groove by rearranging not only BL1 but also a previously undescribed network of three interconnected active-site-blocking loops. Ubp6 activation and noncatalytic proteasome inhibition are linked in that they are eliminated by the same mutations. Ubp6 and ubiquitin together drive proteasomes into a unique conformation associated with proteasome inhibition. Thus, a multicomponent allosteric switch exerts simultaneous control over both Ubp6 and the proteasome
    • …
    corecore