22 research outputs found

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Kidney Biopsy in Type 2 Diabetes: A Multicenter Cross-Sectional Study

    No full text
    International audienceINTRODUCTION: Kidney biopsies (KBs) are performed in patients with type 2 diabetes (T2D) to diagnose non-diabetic or hypertensive kidney disease (NDHKD) potentially requiring specific management compared to diabetic and or hypertensive nephropathy (absence of NDHKD). Indications for KB are based on the presence of atypical features compared to the typical course of diabetic nephropathy. In this study, we assessed the association of different patterns of atypical features, or KB indications, with NDHKD. METHODS: Native KBs performed in patients with T2D were analyzed. Data were collected from the patients’ records. KB indications were determined according to the presence of different atypical features considered sequentially: (1) presence of any feature suggesting NDHKD which is not among the following ones, (2) recent onset of nephrotic syndrome, (3) low or rapidly declining estimated glomerular filtration rate (eGFR), (4) rapid increase in proteinuria, (5) short duration of diabetes, (6) presence of hematuria, or (7) normal retinal examination. RESULTS: Among the 463 KBs analyzed, NDHKD was diagnosed in 40% of the total population and 54, 40, 24, and 7% of the KBs performed for indications 1-4 respectively. Conversely, no patient who underwent KB for indications 5-7 displayed NDHKD. Logistic regression analyses identified eGFRCKD-EPI &gt;15 mL/min/1.73 m2, urinary protein-to-Cr ratio &lt;0.3 g/mmol, hematuria, HbA1c &lt;7%, and diabetes duration &lt;5 years as predictors of NDHKD, independently from the indication group. CONCLUSION: NDHKD is frequent in T2D. Despite the association of hematuria with NDHKD, our results suggest that presence of hematuria and absence of DR are insufficient to indicate KB in the absence of concurrent atypical features. Conversely, rapid progression of proteinuria and rapid deterioration of eGFR are major signals of NDHKD

    Differential localization patterns of claudin 10, 16, and 19 in human, mouse, and rat renal tubular epithelia

    No full text
    International audienceFunctional properties of the paracellular pathway depend critically on the set of claudins (CLDN) expressed at the tight junction. Two syndromes are causally linked to loss-of-function mutations of claudins: hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia (HELIX) syndrome caused by genetic variations in the CLDN10 gene and familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by genetic variations in the CLDN16 or CLDN19 genes. All three genes are expressed in the kidney, particularly in the thick ascending limb (TAL). However, localization of these claudins in humans and rodents remains to be delineated in detail. We studied the segmental and subcellular expression of CLDN10, CLDN16, and CLDN19 in both paraffin-embedded and frozen kidney sections from the adult human, mouse, and rat using immunohistochemistry and immunofluorescence, respectively. Here, CLDN10 was present in a subset of medullary and cortical TAL cells, localizing to basolateral domains and tight junctions in human and rodent kidneys. Weak expression was detected at the tight junction of proximal tubular cells. CLDN16 was primarily expressed in a subset of TAL cells in the cortex and outer stripe of outer medulla, restricted to basolateral domains and tight junctional structures in both human and rodent kidneys. CLDN19 predominantly colocalized with CLDN16 in tight junctions and basolateral domains of the TAL but was also found in basolateral and junctional domains in more distal sites. CLDN10 expression at tight junctions almost never overlapped with that of CLND16 and CLDN19, consistent with distinct junctional pathways with different permeation profiles in both human and rodent kidneys.NEW & NOTEWORTHY This study used immunohistochemistry and immunofluorescence to investigate the distribution of claudin 10, 16, and 19 in the human, mouse, and rat kidney. The findings showed distinct junctional pathways in both human and rodent kidneys, supporting the existence of different permeation profiles in all species investigated

    COVID-19 outbreak in vaccinated patients from a haemodialysis unit: antibody titres as a marker of protection from infection

    No full text
    International audienceBackground Patients on maintenance haemodialysis (HD) have an increased risk of severe coronavirus disease 2019 (COVID-19) and a reduced response to vaccines. Data are needed to identify immune correlates of protection in this population. Methods Following a COVID-19 outbreak among vaccinated patients in a HD unit, clinical data and serological response to BNT162b2 vaccine were retrospectively recorded. Results Among 53 patients present in the dialysis room, 14 were infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) alpha variant (COVID_Pos) and 39 were not. Compared with uninfected patients, COVID_Pos patients more frequently had additional causes of immunosuppression (50% versus 21%; P = .046) and were more often scheduled on the Monday–Wednesday–Friday (MWF) shift (86% versus 39%; P = .002). Moreover, COVID_Pos had lower anti-spike (S) immunoglobulin G (IgG) titres than uninfected patients {median 24 BAU/mL [interquartile range (IQR) 3–1163] versus 435 [99–2555]; P = .001} and lower neutralization titres [median 108 (IQR 17–224) versus 2483 (481–43 908); P = .007]. Anti-S and neutralization antibody titres are correlated (r = 0.92, P &lt; .001). In multivariable analysis, an MWF schedule {odds ratio [OR] 10.74 [95% confidence interval (CI) 1.9–93.5], P = .014} and anti-S IgG titres 1 month before the outbreak [&lt;205 BAU/mL: OR 0.046 (95% CI 0.002–0.29), P = .006] were independently associated with COVID-19 infection. None of the patients with anti-S IgG &gt;284 BAU/mL got infected. Ten of 14 COVID_Pos patients were treated with casirivimab and imdevimab. No patient developed severe disease. Conclusions Anti-S IgG titre measured prior to exposure correlates to protection from SARS-CoV-2 infection in HD patients. BNT162b2 vaccination alone or in combination with monoclonal antibodies prevented severe COVID-19

    Characteristics, management, and prognosis of elderly patients with COVID-19 admitted in the ICU during the first wave: insights from the COVID-ICU study

    No full text
    International audienceBackground: The COVID-19 pandemic is a heavy burden in terms of health care resources. Future decision-making policies require consistent data on the management and prognosis of the older patients (&gt; 70 years old) with COVID-19 admitted in the intensive care unit (ICU). Methods: Characteristics, management, and prognosis of critically ill old patients (&gt; 70 years) were extracted from the international prospective COVID-ICU database. A propensity score weighted-comparison evaluated the impact of intubation upon admission on Day-90 mortality. Results: The analysis included 1199 (28% of the COVID-ICU cohort) patients (median [interquartile] age 74 [72–78] years). Fifty-three percent, 31%, and 16% were 70–74, 75–79, and over 80 years old, respectively. The most frequent comorbidities were chronic hypertension (62%), diabetes (30%), and chronic respiratory disease (25%). Median Clinical Frailty Scale was 3 (2–3). Upon admission, the PaO2/FiO2 ratio was 154 (105–222). 740 (62%) patients were intubated on Day-1 and eventually 938 (78%) during their ICU stay. Overall Day-90 mortality was 46% and reached 67% among the 193 patients over 80 years old. Mortality was higher in older patients, diabetics, and those with a lower PaO2/FiO2 ratio upon admission, cardiovascular dysfunction, and a shorter time between first symptoms and ICU admission. In propensity analysis, early intubation at ICU admission was associated with a significantly higher Day-90 mortality (42% vs 28%; hazard ratio 1.68; 95% CI 1.24–2.27; p &lt; 0·001). Conclusion: Patients over 70 years old represented more than a quarter of the COVID-19 population admitted in the participating ICUs during the first wave. Day-90 mortality was 46%, with dismal outcomes reported for patients older than 80 years or those intubated upon ICU admission

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome Associated with COVID-19: An Emulated Target Trial Analysis

    No full text
    International audienc

    Correction to: Characteristics and prognosis of bloodstream infection in patients with COVID‑19 admitted in the ICU: an ancillary study of the COVID‑ICU study

    No full text
    International audienc

    Benefits and risks of noninvasive oxygenation strategy in COVID-19: a multicenter, prospective cohort study (COVID-ICU) in 137 hospitals

    No full text
    International audienceAbstract Rational To evaluate the respective impact of standard oxygen, high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) on oxygenation failure rate and mortality in COVID-19 patients admitted to intensive care units (ICUs). Methods Multicenter, prospective cohort study (COVID-ICU) in 137 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, oxygenation failure, and survival data were collected. Oxygenation failure was defined as either intubation or death in the ICU without intubation. Variables independently associated with oxygenation failure and Day-90 mortality were assessed using multivariate logistic regression. Results From February 25 to May 4, 2020, 4754 patients were admitted in ICU. Of these, 1491 patients were not intubated on the day of ICU admission and received standard oxygen therapy (51%), HFNC (38%), or NIV (11%) ( P < 0.001). Oxygenation failure occurred in 739 (50%) patients (678 intubation and 61 death). For standard oxygen, HFNC, and NIV, oxygenation failure rate was 49%, 48%, and 60% ( P < 0.001). By multivariate analysis, HFNC (odds ratio [OR] 0.60, 95% confidence interval [CI] 0.36–0.99, P = 0.013) but not NIV (OR 1.57, 95% CI 0.78–3.21) was associated with a reduction in oxygenation failure). Overall 90-day mortality was 21%. By multivariable analysis, HFNC was not associated with a change in mortality (OR 0.90, 95% CI 0.61–1.33), while NIV was associated with increased mortality (OR 2.75, 95% CI 1.79–4.21, P < 0.001). Conclusion In patients with COVID-19, HFNC was associated with a reduction in oxygenation failure without improvement in 90-day mortality, whereas NIV was associated with a higher mortality in these patients. Randomized controlled trials are needed
    corecore