437 research outputs found

    Bioactivity and structural properties of chimeric analogs of the starfish SALMFamide neuropeptides S1 and S2

    Get PDF
    The starfish SALMFamide neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide) are the prototypical members of a family of neuropeptides that act as muscle relaxants in echinoderms. Comparison of the bioactivity of S1 and S2 as muscle relaxants has revealed that S2 is ten times more potent than S1. Here we investigated a structural basis for this difference in potency by comparing the bioactivity and solution conformations (using NMR and CD spectroscopy) of S1 and S2 with three chimeric analogs of these peptides. A peptide comprising S1 with the addition of S2's N-terminal tetrapeptide (Long S1 or LS1; SGPYGFNSALMFamide) was not significantly different to S1 in its bioactivity and did not exhibit concentration-dependent structuring seen with S2. An analog of S1with its penultimate residue substituted from S2 (S1(T); GFNSALTFamide) exhibited S1-like bioactivity and structure. However, an analog of S2 with its penultimate residue substituted from S1 (S2(M); SGPYSFNSGLMFamide) exhibited loss of S2-type bioactivity and structural properties. Collectively, our data indicate that the C-terminal regions of S1 and S2 are the key determinants of their differing bioactivity. However, the N-terminal region of S2 may influence its bioactivity by conferring structural stability in solution. Thus, analysis of chimeric SALMFamides has revealed how neuropeptide bioactivity is determined by a complex interplay of sequence and conformation

    Structural analysis of the starfish SALMFamide neuropeptides S1 and S2: The N-terminal region of S2 facilitates self-association

    Get PDF
    The neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide), which share sequence similarity, were discovered in the starfish Asterias rubens and are prototypical members of the SALMFamide family of neuropeptides in echinoderms. SALMFamide neuropeptides act as muscle relaxants and both S1 and S2 cause relaxation of cardiac stomach and tube foot preparations in vitro but S2 is an order of magnitude more potent than S1. Here we investigated a structural basis for this difference in potency using spectroscopic techniques. Circular dichroism spectroscopy showed that S1 does not have a defined structure in aqueous solution and this was supported by 2D nuclear magnetic resonance experiments. In contrast, we found that S2 has a well-defined conformation in aqueous solution. However, the conformation of S2 was concentration dependent, with increasing concentration inducing a transition from an unstructured to a structured conformation. Interestingly, this property of S2 was not observed in an N-terminally truncated analogue of S2 (short S2 or SS2; SFNSGLTFamide). Collectively, the data obtained indicate that the N-terminal region of S2 facilitates peptide self-association at high concentrations, which may have relevance to the biosynthesis and/or bioactivity of S2 in vivo

    Multi-Phase Patterns in Periodically Forced Oscillatory Systems

    Full text link
    Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with successive phase shifts of π/2\pi/2. Using an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions connecting different phase states. These solutions divide into two groups: π\pi-fronts separating states with a phase shift of π\pi and π/2\pi/2-fronts separating states with a phase shift of π/2\pi/2. We find a new type of front instability where a stationary π\pi-front ``decomposes'' into a pair of traveling π/2\pi/2-fronts as the forcing strength is decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability point a continuous family of pair solutions exists, consisting of π/2\pi/2-fronts separated by distances ranging from zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n=3,4,..) where stationary π\pi-fronts decompose into n traveling π/n\pi/n-fronts. The instabilities designate transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the forcing strength within the 4:1 resonance is increased

    A Phase Front Instability in Periodically Forced Oscillatory Systems

    Full text link
    Multiplicity of phase states within frequency locked bands in periodically forced oscillatory systems may give rise to front structures separating states with different phases. A new front instability is found within bands where ωforcing/ωsystem=2n\omega_{forcing}/\omega_{system}=2n (n>1n>1). Stationary fronts shifting the oscillation phase by π\pi lose stability below a critical forcing strength and decompose into nn traveling fronts each shifting the phase by π/n\pi/n. The instability designates a transition from stationary two-phase patterns to traveling nn-phase patterns

    Tracking human face features in thermal images for respiration monitoring

    Get PDF
    A method has been developed to track a region related to respiration process in thermal images. The respiration region of interest (ROI) consisted of the skin area around the tip of the nose. The method was then used as part of a non-contact respiration rate monitoring that determined the skin temperature changes caused by respiration. The ROI was located by the first determining the relevant salient features of the human face physiology. These features were the warmest and coldest facial points. The tracking method was tested on thermal video images containing no head movements, small random and regular head movements. The method proved valuable for tracking the ROI in all these head movement types. It was also possible to use this tracking method to monitor respiration rate involving a number of head movement types. Currently, more investigations are underway to improve the tracking method so that it can track the ROI in cases larger head movements

    Frozen spatial chaos induced by boundaries

    Get PDF
    We show that rather simple but non-trivial boundary conditions could induce the appearance of spatial chaos (that is stationary, stable, but spatially disordered configurations) in extended dynamical systems with very simple dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion equation in a two-dimensional undulated domain. Concepts from the theory of dynamical systems, and a transverse-single-mode approximation are used to describe the spatially chaotic structures.Comment: 9 pages, 6 figures, submitted for publication; for related work visit http://www.imedea.uib.es/~victo

    Mapping the autistic advantage from the accounts of adults diagnosed with autism: A qualitative study

    Get PDF
    This is the final version. Available on open access from Mary Ann Liebert via the DOI in this recordBackground: Autism has been associated with specific cognitive strengths. Strengths and weaknesses have traditionally been conceptualized as dichotomous. Methods: We conducted 28 semi-structured interviews with autistic adults. Maximum variation sampling was used to ensure diversity in relation to support needs. We asked which personal traits adults attributed to their autism, and how these have helped in the workplace, in relationships, and beyond. Data were collected in two stages. Responses were analyzed using content and thematic techniques. Results: The ability to hyperfocus, attention to detail, good memory, and creativity were the most frequently described traits. Participants also described specific qualities relating to social interaction, such as honesty, loyalty, and empathy for animals or for other autistic people. In thematic analysis we found that traits associated with autism could be experienced either as advantageous or disadvantageous dependent on moderating influences. Moderating influences included the social context in which behaviors occurred, the ability to control behaviors, and the extent to which traits were expressed. Conclusions: Separating autistic strengths from weaknesses may be a false dichotomy if traits cannot be isolated as separate constructs of strengths or deficits. If attempts to isolate problematic traits from advantageous traits are ill conceived, there may be implications for interventions that have reduction in autistic traits as a primary outcome measure.Wellcome Trus

    People should be allowed to do what they like’: Autistic adults’ views and experiences of stimming

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Data from participants who consented will be deposited in the UK Data Service, in 2019.‘Stereotyped or repetitive motor movements’ are characterised as core features in the diagnosis of autism, yet many autistic adults (and the neurodiversity movement) have reclaimed them as ‘stimming’. Supported by a growing body of scientific research, autistic adults argue that these behaviours may serve as useful coping mechanisms, yet little research has examined stimming from the perspective of autistic adults. Through interviews and focus groups, we asked 32 autistic adults to share their perceptions and experiences of stimming, including the reasons they stim, any value doing so may hold for them and their perceptions of others’ reactions to stimming. Using thematic analysis, we identified two themes: stimming as (1) a self-regulatory mechanism and (2) lacking in social acceptance, but can become accepted through understanding. Autistic adults highlighted the importance of stimming as an adaptive mechanism that helps them to soothe or communicate intense emotions or thoughts and thus objected to treatment that aims to eliminate the behaviour.Wellcome TrustLeverhulme Trus

    Order Parameter Equations for Front Transitions: Planar and Circular Fronts

    Full text link
    Near a parity breaking front bifurcation, small perturbations may reverse the propagation direction of fronts. Often this results in nonsteady asymptotic motion such as breathing and domain breakup. Exploiting the time scale differences of an activator-inhibitor model and the proximity to the front bifurcation, we derive equations of motion for planar and circular fronts. The equations involve a translational degree of freedom and an order parameter describing transitions between left and right propagating fronts. Perturbations, such as a space dependent advective field or uniform curvature (axisymmetric spots), couple these two degrees of freedom. In both cases this leads to a transition from stationary to oscillating fronts as the parity breaking bifurcation is approached. For axisymmetric spots, two additional dynamic behaviors are found: rebound and collapse.Comment: 9 pages. Aric Hagberg: http://t7.lanl.gov/People/Aric/; Ehud Meron: http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    Cholecystokinin in the central nervous system of the sea lamprey Petromyzon marinus: precursor identification and neuroanatomical relationships with other neuronal signalling systems

    Get PDF
    Cholecystokinin (CCK) is a neuropeptide that modulates processes such as digestion, satiety, and anxiety. CCK-type peptides have been characterized in jawed vertebrates and invertebrates, but little is known about CCK-type signalling in the most ancient group of vertebrates, the agnathans. Here, we have cloned and sequenced a cDNA encoding a sea lamprey (Petromyzon marinus L.) CCK-type precursor (PmCCK), which contains a CCK-type octapeptide sequence (PmCCK-8) that is highly similar to gnathostome CCKs. Using mRNA in situ hybridization, the distribution of PmCCK-expressing neurons was mapped in the CNS of P. marinus. This revealed PmCCK-expressing neurons in the hypothalamus, posterior tubercle, prethalamus, nucleus of the medial longitudinal fasciculus, midbrain tegmentum, isthmus, rhombencephalic reticular formation, and the putative nucleus of the solitary tract. Some PmCCK-expressing neuronal populations were only observed in adults, revealing important differences with larvae. We generated an antiserum to PmCCK-8 to enable immunohistochemical analysis of CCK expression, which revealed that GABA or glutamate, but not serotonin, tyrosine hydroxylase or neuropeptide Y, is co-expressed in some PmCCK-8-immunoreactive (ir) neurons. Importantly, this is the first demonstration of co-localization of GABA and CCK in neurons of a non-mammalian vertebrate. We also characterized extensive cholecystokinergic fibre systems of the CNS, including innervation of habenular subnuclei. A conspicuous PmCCK-8-ir tract ascending in the lateral rhombencephalon selectively innervates a glutamatergic population in the dorsal isthmic grey. Interestingly, this tract is reminiscent of the secondary gustatory/visceral tract of teleosts. In conclusion, this study provides important new information on the evolution of the cholecystokinergic system in vertebrates.</p
    • 

    corecore