106 research outputs found

    Inference in Ecology: The Sea Urchin Phenomenon in the Northwestern Atlantic

    Get PDF
    We have reviewed the considerable body of research into the sea urchin phenomenon responsible for the alternation between macroalgal beds and coralline barrens in the northwestern Atlantic. In doing so, we have identified problems with both the scientific approach and the interpretation of results. Over a period of approximately 20 years, explanations for the phenomenon invoked four separate scenarios, which changed mainly as a consequence of extraneous events rather than experimental testing. Our specific concerns are that results contrary to the keystone-predator paradigm for the American lobster were circumvented, system components of the various scenarios became accepted without testing, and modifications of some components appeared arbitrary. Our review illustrates dilemmas that, we suggest, have hindered ecological progress in general. We argue for a more rigorous experimental approach, based on sound natural-history observations and strong inference. Moreover, we believe that the scientific community needs to be cautious about allowing paradigms to become established without adequate scrutiny

    Flexible prey handling, preference and a novel capture technique in invasive, sub-adult Chinese mitten crabs

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published version of the article

    Spatial Distribution of the Pathways of Cholesterol Homeostasis in Human Retina

    Get PDF
    The retina is a light-sensitive tissue lining the inner surface of the eye and one of the few human organs whose cholesterol maintenance is still poorly understood. Challenges in studies of the retina include its complex multicellular and multilayered structure; unique cell types and functions; and specific physico-chemical environment.We isolated specimens of the neural retina (NR) and underlying retinal pigment epithelium (RPE)/choroid from six deceased human donors and evaluated them for expression of genes and proteins representing the major pathways of cholesterol input, output and regulation. Eighty-four genes were studied by PCR array, 16 genes were assessed by quantitative real time PCR, and 13 proteins were characterized by immunohistochemistry. Cholesterol distribution among different retinal layers was analyzed as well by histochemical staining with filipin. Our major findings pertain to two adjacent retinal layers: the photoreceptor outer segments of NR and the RPE. We demonstrate that in the photoreceptor outer segments, cholesterol biosynthesis, catabolism and regulation via LXR and SREBP are weak or absent and cholesterol content is the lowest of all retinal layers. Cholesterol maintenance in the RPE is different, yet the gene expression also does not appear to be regulated by the SREBPs and varies significantly among different individuals.This comprehensive investigation provides important insights into the relationship and spatial distribution of different pathways of cholesterol input, output and regulation in the NR-RPE region. The data obtained are important for deciphering the putative link between cholesterol and age-related macular degeneration, a major cause of irreversible vision loss in the elderly

    Interleukin and Growth Factor Levels in Subretinal Fluid in Rhegmatogenous Retinal Detachment: A Case-Control Study

    Get PDF
    BACKGROUND: Rhegmatogenous retinal detachment (RRD) is a major cause of visual loss in developed countries. Proliferative vitreoretinopathy (PVR), an eye-sight threatening complication of RRD surgery, resembles a wound-healing process with inflammation, scar tissue formation, and membrane contraction. This study was performed to determine the possible involvement of a wide range of cytokines in the future development of PVR, and to identify predictors of PVR and visual outcome. METHODOLOGY: A multiplex immunoassay was used for the simultaneous detection of 29 different cytokines in subretinal fluid samples from patients with primary RRD. Of 306 samples that were collected and stored in our BioBank between 2001 and 2008, 21 samples from patients who developed postoperative PVR were compared with 54 age-, sex-, and storage-time-matched RRD control patients who had an uncomplicated postoperative course during the overall follow-up period. FINDINGS: Levels of IL-1α, IL-2, IL-3, IL-6, VEGF, and ICAM-1 were significantly higher (P<0.05) in patients who developed postoperative PVR after reattachment surgery than in patients with an uncomplicated postoperative course, whereas levels of IL-1β, IL-4, IL-5, IL-7, IL-9, IL-10, IL-11, IL-12p70, IL-13, IL-15, IL-17, IL-18, IL-21, IL-22, IL-23, IL-25, IL-33, TNF-α, IFN-γ, IGF-1, bFGF, HGF, and NGF were not (P>0.05). Multivariate logistic regression analysis revealed that IL-3 (P = 0.001), IL-6 (P = 0.047), ICAM-1 (P = 0.010), and preoperative visual acuity (P = 0.026) were independent predictors of postoperative PVR. Linear regression analysis showed that ICAM-1 (P = 0.005) and preoperative logMAR visual acuity (P = 0.001) were predictive of final visual outcome after primary RRD repair. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that after RRD onset an exaggerated response of certain cytokines may predispose to PVR. Sampling at a time close to the onset of primary RRD may thus provide clues as to which biological events may initiate the development of PVR and, most importantly, may provide a means for therapeutic control

    The Anatomy of the bill Tip of Kiwi and Associated Somatosensory Regions of the Brain: Comparisons with Shorebirds

    Get PDF
    Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation

    Foraging for foundations in decision neuroscience: insights from ethology

    Get PDF
    Modern decision neuroscience offers a powerful and broad account of human behaviour using computational techniques that link psychological and neuroscientific approaches to the ways that individuals can generate near-optimal choices in complex controlled environments. However, until recently, relatively little attention has been paid to the extent to which the structure of experimental environments relates to natural scenarios, and the survival problems that individuals have evolved to solve. This situation not only risks leaving decision-theoretic accounts ungrounded but also makes various aspects of the solutions, such as hard-wired or Pavlovian policies, difficult to interpret in the natural world. Here, we suggest importing concepts, paradigms and approaches from the fields of ethology and behavioural ecology, which concentrate on the contextual and functional correlates of decisions made about foraging and escape and address these lacunae
    • …
    corecore