328 research outputs found

    10 Years of C-K Theory: A Survey on the Academic and Industrial Impacts of a Design Theory.

    No full text
    The goal of our research1 was to understand what is expected today from a design theory and what types of impact such type of scientific proposition may reach. To answer these questions with a grounded approach we chosed to study the developement of C-K theory as phenomenon per se that can inform our research work. C-K theory is clearly recognized as a design theory and it is a good representative of the level of generality and abstraction of contemporary design theory. Indeed, the validity of the theory as such has already been documented (e.g. Hatchuel & Weil 2002, 2003, 2008, 2009; Kazakçi 2009; Reich et al 2010; Le Masson et al 2010; Ullah et al 2012). Instead the current work sets out to understand the dissemination and the impact of the theory in both academic and industrial fields. The data collection overlooks the literature on C-K theory in English and in French, and includes interviews and feedbacks of students and industrial partners who applied C-K methodologies and tools. This research confirms the rapid diffusion and multiples impact of C-K theory. Beyond, such study signals that there are important expectations and potential impacts of a Design Theory within the field of knowledge at large. However there are strong conditions to meet these expectations: generality, generativity, and relatedness to contemporary sciences. A similar research could be done on Nam Suh's axiomatic approach to further test these conditions. It is impossible to say what will be the next generations of Design theory but it is sure that they should progress on these directions

    Postnatal Growth after Intrauterine Growth Restriction Alters Central Leptin Signal and Energy Homeostasis

    Get PDF
    Intrauterine growth restriction (IUGR) is closely linked with metabolic diseases, appetite disorders and obesity at adulthood. Leptin, a major adipokine secreted by adipose tissue, circulates in direct proportion to body fat stores, enters the brain and regulates food intake and energy expenditure. Deficient leptin neuronal signalling favours weight gain by affecting central homeostatic circuitry. The aim of this study was to determine if leptin resistance was programmed by perinatal nutritional environment and to decipher potential cellular mechanisms underneath

    Leptin Receptor Signaling and Action in the Central Nervous System

    Full text link
    The increasing incidence of obesity in developed nations represents an ever‐growing challenge to health care by promoting diabetes and other diseases. The discovery of the hormone, leptin, a decade ago has facilitated the acquisition of new knowledge regarding the regulation of energy balance. A great deal remains to be discovered regarding the molecular and anatomic actions of leptin, however. Here, we discuss the mechanisms by which leptin activates intracellular signals, the roles that these signals play in leptin action in vivo, and sites of leptin action in vivo. Using “reporter” mice, in which LRb‐expressing (long form of the leptin receptor) neurons express the histological marker, β‐galactosidase, coupled with the detection of LRb‐mediated signal transducer and activator of transcription 3 signaling events, we identified LRb expression in neuronal populations both within and outside the hypothalamus. Understanding the regulation and physiological function of these myriad sites of central leptin action will be a crucial next step in the quest to understand mechanisms of leptin action and energy balance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93692/1/oby.2006.310.pd

    Activation of Central Melanocortin Pathways by Fenfluramlne

    Get PDF
    D-fenfluramine (d-FEN) was once widely prescribed and was among the most effective weight loss drugs, but was withdrawn from clinical use because of reports of cardiac complications in a subset of patients. Discerning the neurobiology underlying the anorexic action of d-FEN may facilitate the development of new drugs to prevent and treat obesity. Through a combination of functional neuroanatomy, feeding, and electrophysiology studies in rodents, we show that d-FEN-induced anorexia requires activation of central nervous system melanocortin pathways. These results provide a mechanistic explanation of d-FEN\u27s anorexic actions and indicate that drugs targeting these downstream melanocortin pathways may prove to be effective and more selective antiobesity treatments

    Brain Apolipoprotein E: an Important Regulator of Food Intake in Rats

    Get PDF
    OBJECTIVE—The worldwide prevalence of obesity is increasing at an alarming rate, along with the associated increased rates of type 2 diabetes, heart disease, and some cancers. While efforts to address environmental factors responsible for the recent epidemic must continue, investigation into the anorectic functions of potential molecules we present here, such as apolipoprotein (apo)E, offers exciting possibilities for future development of successful anti-obesity therapies

    Leptin mediates the increase in blood pressure associated with obesity.

    Get PDF
    Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species

    PANIC-ATTAC: A Mouse Model for Inducible and Reversible β-Cell Ablation

    Get PDF
    OBJECTIVE—Islet transplantations have been performed clinically, but their practical applications are limited. An extensive effort has been made toward the identification of pancreatic β-cell stem cells that has yielded many insights to date, yet targeted reconstitution of β-cell mass remains elusive. Here, we present a mouse model for inducible and reversible ablation of pancreatic β-cells named the PANIC-ATTAC (pancreatic islet β-cell apoptosis through targeted activation of caspase 8) mouse

    Leptin Does Not Directly Affect CNS Serotonin Neurons to Influence Appetite

    Get PDF
    Serotonin (5-HT) and leptin play important roles in the modulation of energy balance. Here we investigated mechanisms by which leptin might interact with CNS 5-HT pathways to influence appetite. Although some leptin receptor (LepRb) neurons lie close to 5-HT neurons in the dorsal raphe (DR), 5-HT neurons do not express LepRb. Indeed, while leptin hyperpolarizes some non-5-HT DR neurons, leptin does not alter the activity of DR 5-HT neurons. Furthermore, 5-HT depletion does not impair the anorectic effects of leptin. The serotonin transporter-cre allele (Sert(cre)) is expressed in 5-HT (and developmentally in some non-5-HT) neurons. While Sert(cre) promotes LepRb excision in a few LepRb neurons in the hypothalamus, it is not active in DR LepRb neurons, and neuron-specific Sert(cre)-mediated LepRb inactivation in mice does not alter body weight or adiposity. Thus, leptin does not directly influence 5-HT neurons and does not meaningfully modulate important appetite-related determinants via 5-HT neuron function
    corecore