212 research outputs found

    Exacerbations of chronic obstructive pulmonary disease: when are antibiotics indicated? A systematic review

    Get PDF
    BACKGROUND: For decades, there is an unresolved debate about adequate prescription of antibiotics for patients suffering from exacerbations of chronic obstructive pulmonary disease (COPD). The aim of this systematic review was to analyse randomised controlled trials investigating the clinical benefit of antibiotics for COPD exacerbations. METHODS: We conducted a systematic review of randomised, placebo-controlled trials assessing the effects of antibiotics on clinically relevant outcomes in patients with an exacerbation. We searched bibliographic databases, scrutinized reference lists and conference proceedings and asked the pharmaceutical industry for unpublished data. We used fixed-effects models to pool results. The primary outcome was treatment failure of COPD exacerbation treatment. RESULTS: We included 13 trials (1557 patients) of moderate to good quality. For the effects of antibiotics on treatment failure there was much heterogeneity across all trials (I(2 )= 82%). Meta-regression revealed severity of exacerbation as significant explanation for this heterogeneity (p = 0.016): Antibiotics did not reduce treatment failures in outpatients with mild to moderate exacerbations (pooled odds ratio 1.09, 95% CI 0.75–1.59, I(2 )= 18%). Inpatients with severe exacerbations had a substantial benefit on treatment failure rates (pooled odds ratio of 0.25, 95% CI 0.16–0.39, I(2 )= 0%; number-needed to treat of 4, 95% CI 3–5) and on mortality (pooled odds ratio of 0.20, 95% CI 0.06–0.62, I(2 )= 0%; number-needed to treat of 14, 95% CI 12–30). CONCLUSION: Antibiotics effectively reduce treatment failure and mortality rates in COPD patients with severe exacerbations. For patients with mild to moderate exacerbations, antibiotics may not be generally indicated and further research is needed to guide antibiotic prescription in these patients

    Spatially and Financially Explicit Population Viability Analysis of Maculinea alcon in The Netherlands

    Get PDF
    Background The conservation of species structured in metapopulations involves an important dilemma of resource allocation: should investments be directed at restoring/enlarging habitat patches or increasing connectivity. This is still an open question for Maculinea species despite they are among the best studied and emblematic butterfly species, because none of the population dynamics models developed so far included dispersal. Methodology/Principal Findings We developed the first spatially and financially explicit Population Viability Analysis model for Maculinea alcon, using field data from The Netherlands. Implemented using the RAMAS/GIS platform, the model incorporated both local (contest density dependence, environmental and demographic stochasticities), and regional population dynamics (dispersal rates between habitat patches). We selected four habitat patch networks, contrasting in several basic features (number of habitat patches, their quality, connectivity, and occupancy rate) to test how these features are affecting the ability to enhance population viability of four basic management options, designed to incur the same costs: habitat enlargement, habitat quality improvement, creation of new stepping stone habitat patches, and reintroduction of captive-reared butterflies. The PVA model was validated by the close match between its predictions and independent field observations on the patch occupancy pattern. The four patch networks differed in their sensitivity to model parameters, as well as in the ranking of management options. Overall, the best cost-effective option was enlargement of existing habitat patches, followed by either habitat quality improvement or creation of stepping stones depending on the network features. Reintroduction was predicted to generally be inefficient, except in one specific patch network. Conclusions/Significance Our results underline the importance of spatial and regional aspects (dispersal and connectivity) in determining the impact of conservation actions, even for a species previously considered as sedentary. They also illustrate that failure to account for the cost of management scenarios can lead to very different conclusions

    Deciphering the Chemical Basis of Nestmate Recognition

    Get PDF
    Social insects maintain colony cohesion by recognizing and, if necessary, discriminating against conspecifics that are not part of the colony. This recognition ability is encoded by a complex mixture of cuticular hydrocarbons (CHCs), although it is largely unclear how social insects interpret such a multifaceted signal. CHC profiles often contain several series of homologous hydrocarbons, possessing the same methyl branch position but differing in chain length (e.g., 15-methyl-pentatriacontane, 15-methyl-heptatriacontane, 15-methyl-nonatriacontane). Recent studies have revealed that within species these homologs can occur in correlated concentrations. In such cases, single compounds may convey the same information as the homologs. In this study, we used behavioral bioassays to explore how social insects perceive and interpret different hydrocarbons. We tested the aggressive response of Argentine ants, Linepithema humile, toward nest-mate CHC profiles that were augmented with one of eight synthetic hydrocarbons that differed in branch position, chain length, or both. We found that Argentine ants showed similar levels of aggression toward nest-mate CHC profiles augmented with compounds that had the same branch position but differed in chain length. Conversely, Argentine ants displayed different levels of aggression toward nest-mate CHC profiles augmented with compounds that had different branch positions but the same chain length. While this was true in almost all cases, one CHC we tested elicited a greater aggressive response than its homologs. Interestingly, this was the only compound that did not occur naturally in correlated concentrations with its homologs in CHC profiles. Combined, these data suggest that CHCs of a homologous series elicit the same aggressive response because they convey the same information, rather than Argentine ants being unable to discriminate between different homologs. This study contributes to our understanding of the chemical basis of nestmate recognition by showing that, similar to spoken language, the chemical language of social insects contains β€œsynonyms,” chemicals that differ in structure, but not meaning

    A Mouse Model of Acrodermatitis Enteropathica: Loss of Intestine Zinc Transporter ZIP4 (Slc39a4) Disrupts the Stem Cell Niche and Intestine Integrity

    Get PDF
    Loss-of-function of the zinc transporter ZIP4 in the mouse intestine mimics the lethal human disease acrodermatitis enteropathica. This is a rare disease in humans that is not well understood. Our studies demonstrate the paramount importance of ZIP4 in the intestine in this disease and reveal that a root cause of lethality is disruption of the intestine stem cell niche and impaired function of the small intestine. This, in turn, leads to dramatic weight loss and death unless treated with exogenous zinc

    Revisiting the circulation time of Plasmodium falciparum gametocytes: molecular detection methods to estimate the duration of gametocyte carriage and the effect of gametocytocidal drugs

    Get PDF
    BACKGROUND: There is renewed acknowledgement that targeting gametocytes is essential for malaria control and elimination efforts. Simple mathematical models were fitted to data from clinical trials in order to determine the mean gametocyte circulation time and duration of gametocyte carriage in treated malaria patients. METHODS: Data were used from clinical trials from East Africa. The first trial compared non-artemisinin combination therapy (non-ACT: sulphadoxine-pyrimethamine (SP) plus amodiaquine) and artemisinin-based combination therapy (ACT: SP plus artesunate (AS) or artemether-lumefantrine). The second trial compared ACT (SP+AS) with ACT in combination with a single dose of primaquine (ACT-PQ: SP+AS+PQ). Mature gametocytes were quantified in peripheral blood samples by nucleic acid sequence based amplification. A simple deterministic compartmental model was fitted to gametocyte densities to estimate the circulation time per gametocyte; a similar model was fitted to gametocyte prevalences to estimate the duration of gametocyte carriage after efficacious treatment. RESULTS: The mean circulation time of gametocytes was 4.6-6.5 days. After non-ACT treatment, patients were estimated to carry gametocytes for an average of 55 days (95% CI 28.7 - 107.7). ACT reduced the duration of gametocyte carriage fourfold to 13.4 days (95% CI 10.2-17.5). Addition of PQ to ACT resulted in a further fourfold reduction of the duration of gametocyte carriage. CONCLUSIONS: These findings confirm previous estimates of the circulation time of gametocytes, but indicate a much longer duration of (low density) gametocyte carriage after apparently successful clearance of asexual parasites. ACT shortened the period of gametocyte carriage considerably, and had the most pronounced effect on mature gametocytes when combined with PQ
    • …
    corecore