1,323 research outputs found
Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system
A number of representation schemes have been presented for use within
learning classifier systems, ranging from binary encodings to neural networks.
This paper presents results from an investigation into using discrete and fuzzy
dynamical system representations within the XCSF learning classifier system. In
particular, asynchronous random Boolean networks are used to represent the
traditional condition-action production system rules in the discrete case and
asynchronous fuzzy logic networks in the continuous-valued case. It is shown
possible to use self-adaptive, open-ended evolution to design an ensemble of
such dynamical systems within XCSF to solve a number of well-known test
problems
Is the structure of 42Si understood?
A more detailed test of the implementation of nuclear forces that drive shell
evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier
comparisons of excited-state energies -- is important. The two leading
shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which
reproduce the low-lying \nuc{42}{Si}() energy, but whose predictions for
other observables differ significantly, are interrogated by the population of
states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from
\nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the
individual \nuc{42}{Si} final states are compared to calculations that combine
eikonal reaction dynamics with these shell-model nuclear structure overlaps.
The differences in the two shell-model descriptions are examined and linked to
predicted low-lying excited states and shape coexistence. Based on the
present data, which are in better agreement with the SDPF-MU calculations, the
state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the ()
level.Comment: accepted in Physical Review Letter
Neuro-evolution Methods for Designing Emergent Specialization
This research applies the Collective Specialization Neuro-Evolution (CONE) method to the problem of evolving neural controllers in a simulated multi-robot system. The multi-robot system consists
of multiple pursuer (predator) robots, and a single evader (prey) robot. The CONE method is designed to facilitate behavioral
specialization in order to increase task performance in collective behavior solutions. Pursuit-Evasion is a task that benefits
from behavioral specialization. The performance of prey-capture strategies derived by the CONE method, are compared to those
derived by the Enforced Sub-Populations (ESP) method. Results indicate that the CONE method effectively facilitates behavioral specialization in the team of pursuer
robots. This specialization aids in the derivation of robust prey-capture strategies. Comparatively, ESP was found to be not
as appropriate for facilitating behavioral specialization and effective prey-capture behaviors
Fourier Method for Approximating Eigenvalues of Indefinite Stekloff Operator
We introduce an efficient method for computing the Stekloff eigenvalues
associated with the Helmholtz equation. In general, this eigenvalue problem
requires solving the Helmholtz equation with Dirichlet and/or Neumann boundary
condition repeatedly. We propose solving the related constant coefficient
Helmholtz equation with Fast Fourier Transform (FFT) based on carefully
designed extensions and restrictions of the equation. The proposed Fourier
method, combined with proper eigensolver, results in an efficient and clear
approach for computing the Stekloff eigenvalues.Comment: 12 pages, 4 figure
The Economic Resource Receipt of New Mothers
U.S. federal policies do not provide a universal social safety net of economic support for women during pregnancy or the immediate postpartum period but assume that employment and/or marriage will protect families from poverty. Yet even mothers with considerable human and marital capital may experience disruptions in employment, earnings, and family socioeconomic status postbirth. We use the National Survey of Families and Households to examine the economic resources that mothers with children ages 2 and younger receive postbirth, including employment, spouses, extended family and social network support, and public assistance. Results show that many new mothers receive resources postbirth. Marriage or postbirth employment does not protect new mothers and their families from poverty, but education, race, and the receipt of economic supports from social networks do
Characterization of the absolute frequency stability of an individual reference cavity
We demonstrated for the first time the characterization of absolute frequency
stability of three reference cavities by cross beating three laser beams which
are independently locked to these reference cavities. This method shows the
individual feature of each reference cavity, while conventional beatnote
measurement between two cavities can only provide an upper bound. This method
allows for numerous applications such as optimizing the performance of the
reference cavity for optical clockwork.Comment: 3 figures, 9 page
Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations
The Navier--Stokes equations are commonly used to model and to simulate flow
phenomena. We introduce the basic equations and discuss the standard methods
for the spatial and temporal discretization. We analyse the semi-discrete
equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index
and quantify the numerical difficulties in the fully discrete schemes, that are
induced by the strangeness of the system. By analyzing the Kronecker index of
the difference-algebraic equations, that represent commonly and successfully
used time stepping schemes for the Navier--Stokes equations, we show that those
time-integration schemes factually remove the strangeness. The theoretical
considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909,
https://doi.org/10.5281/zenodo.99890
- …