381 research outputs found
Updated Post-WMAP Benchmarks for Supersymmetry
We update a previously-proposed set of supersymmetric benchmark scenarios,
taking into account the precise constraints on the cold dark matter density
obtained by combining WMAP and other cosmological data, as well as the LEP and
b -> s gamma constraints. We assume that R parity is conserved and work within
the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking scalar
and gaugino masses m_0 and m_1/2. In most cases, the relic density calculated
for the previous benchmarks may be brought within the WMAP range by reducing
slightly m_0, but in two cases more substantial changes in m_0 and m_1/2 are
made. Since the WMAP constraint reduces the effective dimensionality of the
CMSSM parameter space, one may study phenomenology along `WMAP lines' in the
(m_1/2, m_0) plane that have acceptable amounts of dark matter. We discuss the
production, decays and detectability of sparticles along these lines, at the
LHC and at linear e+ e- colliders in the sub- and multi-TeV ranges, stressing
the complementarity of hadron and lepton colliders, and with particular
emphasis on the neutralino sector. Finally, we preview the accuracy with which
one might be able to predict the density of supersymmetric cold dark matter
using collider measurements.Comment: 43 pages LaTeX, 13 eps figure
Matching parton showers to NLO computations
We give a prescription for attaching parton showers to next-to-leading order
(NLO) partonic jet cross sections in electron-positron annihilation. Our method
effectively extends to NLO the scheme of Catani, Krauss, Kuhn, and Webber for
matching between m hard jets and (m+1) hard jets. The matching between parton
splitting as part of a shower and parton splitting as part of NLO matrix
elements is based on the Catani-Seymour dipole subtraction method that is
commonly used for removing the singularities from the NLO matrix elements.}Comment: 45 pages, new introduction, more detailed discussion of the Sudakov
reweightin
Bounds on R-Parity Violating Parameters from Fermion EDM's
We study one-loop contributions to the fermion electric dipole moments in the
Minimal Supersymmetric Standard Model with explicit R-parity violating
interactions. We obtain new individual bounds on R-parity violating Yukawa
couplings and put more stringent limits on certain parameters than those
obtained previously.Comment: 16 pages, LaTe
Challenging SO(10) SUSY GUTs with family symmetries through FCNC processes
We perform a detailed analysis of the SO(10) SUSY GUT model with D3 family
symmetry of Dermisek and Raby (DR). The model is specified in terms of 24
parameters and predicts, as a function of them, the whole MSSM set of
parameters at low energy scales. Concerning the SM subset of such parameters,
the model is able to give a satisfactory description of the quark and lepton
masses, of the PMNS matrix and of the CKM matrix. We perform a global fit to
the model, including flavour changing neutral current (FCNC) processes Bs -->
mu+ mu-, B --> Xs gamma, B --> Xs l+ l- and the B(d,s) - bar B(d,s) mass
differences Delta M(d,s) as well as the flavour changing (FC) process B+ -->
tau+ nu. These observables provide at present the most sensitive probe of the
SUSY mass spectrum and couplings predicted by the model. Our analysis
demonstrates that the simultaneous description of the FC observables in
question represents a serious challenge for the DR model, unless the masses of
the scalars are moved to regions which are problematic from the point of view
of naturalness and probably beyond the reach of the LHC. We emphasize that this
problem could be a general feature of SUSY GUT models with third generation
Yukawa unification and weak-scale minimal flavour violation.Comment: 1 + 37 pages, 5 figures, 11 tables. v3: minor typos fixed. Matches
JHEP published versio
T-odd Correlations in the Decay of Scalar Fermions
We define a CP sensitive asymmetry in the sfermion decays \ti f \to f
\ti\chi^0_j \ell \bar \ell, f \ti\chi^0_j q \bar q, based on triple product
correlations between the momenta of the outgoing fermions. We study this
asymmetry in the MSSM with complex parameters. We show that the asymmetry is
sensitive to the phases of the parameters and . The leading
contribution stems from the decay chain \ti f\to f \ti\chi^0_j\to f
\ti\chi^0_1 Z\to f \ti\chi^0_1 \ell \bar \ell (f \ti\chi^0_1 q \bar q), for
which we obtain analytic formulae for the amplitude squared. The asymmetry can
go up to 3% for \ti f\to f \ti\chi^0_1 \ell \bar \ell, and up to 20% for \ti
f\to f \ti\chi^0_1 q \bar q. We also estimate the rates necessary to measure
the asymmetry.Comment: 18 pages, 5 figures, 2 tables; comments and references added; two
tables added; version to appear in Eur. Phys.
Ultra-High Energy Neutrino Fluxes: New Constraints and Implications
We apply new upper limits on neutrino fluxes and the diffuse extragalactic
component of the GeV gamma-ray flux to various scenarios for ultra high energy
cosmic rays and neutrinos. As a result we find that extra-galactic top-down
sources can not contribute significantly to the observed flux of highest energy
cosmic rays. The Z-burst mechanism where ultra-high energy neutrinos produce
cosmic rays via interactions with relic neutrinos is practically ruled out if
cosmological limits on neutrino mass and clustering apply.Comment: 10 revtex pages, 9 postscript figure
Supersymmetric Benchmarks with Non-Universal Scalar Masses or Gravitino Dark Matter
We propose and examine a new set of benchmark supersymmetric scenarios, some
of which have non-universal Higgs scalar masses (NUHM) and others have
gravitino dark matter (GDM). The scalar masses in these models are either
considerably larger or smaller than the narrow range allowed for the same
gaugino mass m_{1/2} in the constrained MSSM (CMSSM) with universal scalar
masses m_0 and neutralino dark matter. The NUHM and GDM models with larger m_0
may have large branching ratios for Higgs and/or production in the cascade
decays of heavier sparticles, whose detection we discuss. The phenomenology of
the GDM models depends on the nature of the next-to-lightest supersymmetric
particle (NLSP), which has a lifetime exceeding 10^4 seconds in the proposed
benchmark scenarios. In one GDM scenario the NLSP is the lightest neutralino
\chi, and the supersymmetric collider signatures are similar to those in
previous CMSSM benchmarks, but with a distinctive spectrum. In the other GDM
scenarios based on minimal supergravity (mSUGRA), the NLSP is the lighter stau
slepton {\tilde \tau}_1, with a lifetime between ~ 10^4 and 3 X 10^6 seconds.
Every supersymmetric cascade would end in a {\tilde \tau}_1, which would have a
distinctive time-of-flight signature. Slow-moving {\tilde \tau}_1's might be
trapped in a collider detector or outside it, and the preferred detection
strategy would depend on the {\tilde \tau}_1 lifetime. We discuss the extent to
which these mSUGRA GDM scenarios could be distinguished from gauge-mediated
models.Comment: 52 pages LaTeX, 13 figure
A Window on the CP-violating Phases of MSSM from Lepton Flavor Violating Processes
It has recently been shown that by measuring the transverse polarization of
the final particles in the LFV processes , and
, one can derive information on the CP-violating phases of the
underlying theory. We derive formulas for the transverse polarization of the
final particles in terms of the couplings of the effective potential leading to
these processes. We then study the dependence of the polarizations of and
in the and on the parameters of the
Minimal Supersymmetric Standard Model (MSSM). We show that combining the
information on various observables in the and
search experiments with the information on the electric dipole moment of the
electron can help us to solve the degeneracies in parameter space and to
determine the values of certain phases.Comment: 16 pages, 8 figure
Neutralino-Nucleon Cross Section and Charge and Colour Breaking Constraints
We compute the neutralino-nucleon cross section in several supersymmetric
scenarios, taking into account all kind of constraints. In particular, the
constraints that the absence of dangerous charge and colour breaking minima
imposes on the parameter space are studied in detail. In addition, the most
recent experimental constraints, such as the lower bound on the Higgs mass, the
branching ratio, and the muon are considered. The
astrophysical bounds on the dark matter density are also imposed on the
theoretical computation of the relic neutralino density, assuming thermal
production. This computation is relevant for the theoretical analysis of the
direct detection of dark matter in current experiments. We consider first the
supergravity scenario with universal soft terms and GUT scale. In this scenario
the charge and colour breaking constraints turn out to be quite important, and
\tan\beta\lsim 20 is forbidden. Larger values of can also be
forbidden, depending on the value of the trilinear parameter . Finally, we
study supergravity scenarios with an intermediate scale, and also with
non-universal scalar and gaugino masses where the cross section can be very
large.Comment: Final version to appear in JHE
Observational Cosmology in Macroscopic Gravity
We discuss the construction of cosmological models within the framework of
Macroscopic Gravity (MG), which is a theory that models the effects of
averaging the geometry of space-time on large scales. We find new exact
spatially homogeneous and isotropic FLRW solutions to the MG field equations,
and investigate large-scale perturbations around them. We find that any
inhomogeneous perturbations to the averaged geometry are severely restricted,
but that possible anisotropies in the correlation tensor can have dramatic
consequences for the measurement of distances. These calculations are a first
step within the MG approach toward developing averaged cosmological models to a
point where they can be used to interpret real cosmological data, and hence to
provide a working alternative to the "concordance" LCDM model.Comment: 22 page
- …
