1,365 research outputs found

    High-Energy Constraints on the Direct Detection of MSSM Neutralinos

    Full text link
    The requirement that the MSSM remain an acceptable effective field theory up to energies beyond the weak scale constrains the sparticle spectrum, and hence the permissible ranges of cold dark matter neutralino-proton cross sections. Specifically, squarks are generally much heavier than sleptons if no tachyons are to appear before the GUT scale ~10^16 GeV, or even before 10 TeV. We display explicitly the allowed ranges of effective squark and slepton masses at the weak scale, and the cross-section ranges allowed if the MSSM is to remain valid without tachyons up to 10 TeV or the GUT scale. The allowed areas in the cross section-mass plane for both spin-independent and spin-dependent scattering are significantly smaller than would be allowed if the MSSM were required to be valid only around the weak scale. In addition to a reduction in the maximum cross section, the upper limit on the neutralino mass is greatly reduced when tachyons are avoided, particularly for smaller values of the squark masses.Comment: 22 pages, 22 figure

    Kinetics and Inhibition Studies of the L205R Mutant of cAMP-Dependent Protein Kinase Involved in Cushing’s Syndrome

    Get PDF
    Overproduction of cortisol by the hypothalamus–pituitary–adrenal hormone system results in the clinical disorder known as Cushing\u27s syndrome. Genomics studies have identified a key mutation (L205R) in the α‐isoform of the catalytic subunit of cAMP‐dependent protein kinase (PKACα) in adrenal adenomas of patients with adrenocorticotropic hormone‐independent Cushing\u27s syndrome. Here, we conducted kinetics and inhibition studies on the L205R‐PKACα mutant. We have found that the L205R mutation affects the kinetics of both Kemptide and ATP as substrates, decreasing the catalytic efficiency (kcat/KM) for each substrate by 12‐fold and 4.5‐fold, respectively. We have also determined the IC50 and Ki for the peptide substrate‐competitive inhibitor PKI(5–24) and the ATP‐competitive inhibitor H89. The L205R mutation had no effect on the potency of H89, but causes a \u3e 250‐fold loss in potency for PKI(5–24). Collectively, these data provide insights for the development of L205R‐PKACα inhibitors as potential therapeutics

    Metastable Charged Sparticles and the Cosmological Li7 Problem

    Full text link
    We consider the effects of metastable charged sparticles on Big-Bang Nucleosynthesis (BBN), including bound-state reaction rates and chemical effects. We make a new analysis of the bound states of negatively-charged massive particles with the light nuclei most prominent in BBN, and present a new code to track their abundances, paying particular attention to that of Li7. Assuming, as an example, that the gravitino is the lightest supersymmetric particle (LSP), and that the lighter stau slepton, stau_1, is the metastable next-to-lightest sparticle within the constrained minimal supersymmetric extension of the Standard Model (CMSSM), we analyze the possible effects on the standard BBN abundances of stau_1 bound states and decays for representative values of the gravitino mass. Taking into account the constraint on the CMSSM parameter space imposed by the discovery of the Higgs boson at the LHC, we delineate regions in which the fit to the measured light-element abundances is as good as in standard BBN. We also identify regions of the CMSSM parameter space in which the bound state properties, chemistry and decays of metastable charged sparticles can solve the cosmological Li7 problem.Comment: 49 pages, 29 eps figure

    Nuclear Reaction Uncertainties, Massive Gravitino Decays and the Cosmological Lithium Problem

    Full text link
    We consider the effects of uncertainties in nuclear reaction rates on the cosmological constraints on the decays of unstable particles during or after Big-Bang nucleosynthesis (BBN). We identify the nuclear reactions due to non-thermal hadrons that are the most important in perturbing standard BBN, then quantify the uncertainties in these reactions and in the resulting light-element abundances. These results also indicate the key nuclear processes for which improved cross section data would allow different light-element abundances to be determined more accurately, thereby making possible more precise probes of BBN and evaluations of the cosmological constraints on unstable particles. Applying this analysis to models with unstable gravitinos decaying into neutralinos, we calculate the likelihood function for the light-element abundances measured currently, taking into account the current experimental errors in the determinations of the relevant nuclear reaction rates. We find a region of the gravitino mass and abundance in which the abundances of deuterium, He4 and Li7 may be fit with chi^2 = 5.5, compared with chi^2 = 31.7 if the effects of gravitino decays are unimportant. The best-fit solution is improved to chi^2 ~ 2.0 when the lithium abundance is taken from globular cluster data. Some such re-evaluation of the observed light-element abundances and/or nuclear reaction rates would be needed if this region of gravitino parameters is to provide a complete solution to the cosmological Li7 problem.Comment: 24 pages, 10 figure

    Gravitino Decays and the Cosmological Lithium Problem in Light of the LHC Higgs and Supersymmetry Searches

    Full text link
    We studied previously the impact on light-element abundances of gravitinos decaying during or after Big-Bang nucleosynthesis (BBN). We found regions of the gravitino mass m_{3/2} and abundance zeta_{3/2} plane where its decays could reconcile the calculated abundance of Li7 with observation without perturbing the other light-element abundances unacceptably. Here we revisit this issue in light of LHC measurements of the Higgs mass and constraints on supersymmetric model parameters, as well as updates in the astrophysical measurements of light-element abundances. In addition to the constrained minimal supersymmetric extension of the Standard Model with universal soft supersymmetry-breaking masses at the GUT scale (the CMSSM) studied previously, we also study models with universality imposed below the GUT scale and models with non-universal Higgs masses (NUHM1). We calculate the total likelihood function for the light-element abundances, taking into account the observational uncertainties. We find that gravitino decays provide a robust solution to the cosmological Li7 problem along strips in the (m_{3/2}, zeta_{3/2}) plane along which the abundances of deuterium, He4 and Li7 may be fit with chi^2_min < 3, compared with chi^2 ~ 34 if the effects of gravitino decays are unimportant. The minimum of the likelihood function is reduced to chi^2 < 2 when the uncertainty on D/H is relaxed and < 1 when the lithium abundance is taken from globular cluster data.Comment: 20 pages, 5 figures; added a new table and a discussion paragraph for it in Section 4, matches the published versio

    Very Constrained Minimal Supersymmetric Standard Models

    Full text link
    We consider very constrained versions of the minimal supersymmetric extension of the Standard Model (VCMSSMs) which, in addition to constraining the scalar masses m_0 and gaugino masses m_{1/2} to be universal at some input scale, impose relations between the trilinear and bilinear soft supersymmetry breaking parameters A_0 and B_0. These relations may be linear, as in simple minimal supergravity models, or nonlinear, as in the Giudice-Masiero mechanism for generating the Higgs-mixing mu term. We discuss the application of the electroweak vacuum conditions in VCMSSMs, which may be used to make a prediction for tan beta as a function of m_0 and m_{1/2} that is usually unique. We baseline the discussion of the parameter spaces allowed in VCMSSMs by updating the parameter space allowed in the CMSSM for fixed values of tan beta with no relation between A_0 and B_0 assumed {\it a priori}, displaying contours of B_0 for a fixed input value of A_0, incorporating the latest CDF/D0 measurement of m_t and the latest BNL measurement of g_mu - 2. We emphasize that phenomenological studies of the CMSSM are frequently not applicable to specific VCMSSMs, notably those based on minimal supergravity, which require m_0 = m_{3/2} as well as A_0 = B_0 + m_0. We then display (m_{1/2}, m_0) planes for selected VCMSSMs, treating in a unified way the parameter regions where either a neutralino or the gravitino is the LSP. In particular, we examine in detail the allowed parameter space for the Giudice-Masiero model.Comment: 26 pages, 32 eps figure

    Prospects for Sparticle Discovery in Variants of the MSSM

    Get PDF
    We discuss the prospects for detecting supersymmetric particles in variants of the minimal supersymmetric extension of the Standard Model (MSSM), in light of laboratory and cosmological constraints. We first assume that the lightest supersymmetric particle (LSP) is the lightest neutralino chi, and present scatter plots of the masses of the two lightest visible supersymmetric particles when the input scalar and gaugino masses are constrained to be universal (CMSSM), when the input Higgs scalar masses are non-universal (NUHM), and when the squark and slepton masses are also non-universal and the MSSM is regarded as a low-energy effective field theory valid up to the GUT scale (LEEST) or just up to 10 TeV (LEEST10). We then present similar plots in various scenarios when the LSP is the gravitino. We compare the prospects for detecting supersymmetry at linear colliders (LCs) of various energies, at the LHC, and as astrophysical dark matter. We find that, whilst a LC with a centre-of-mass energy E_{CM} <= 1000 GeV has some chance of discovering the lightest and next-to-lightest visible supersymmetric particles, E_{CM} >= 3000 GeV would be required to `guarantee' finding supersymmetry in the neutralino LSP scenarios studied, and an even higher E_{CM} might be required in certain gravitino dark matter scenarios. Direct dark matter experiments could explore part of the low-mass neutralino LSP region, but would not reveal all the models accessible to a low-energy LC.Comment: 19 pages, 16 eps figures, as accepted in PL

    Gravitino Dark Matter in the CMSSM

    Get PDF
    We consider the possibility that the gravitino might be the lightest supersymmetric particle (LSP) in the constrained minimal extension of the Standard Model (CMSSM). In this case, the next-to-lightest supersymmetric particle (NSP) would be unstable, with an abundance constrained by the concordance between the observed light-element abundances and those calculated on the basis of the baryon-to-entropy ratio determined using CMB data. We modify and extend previous CMSSM relic neutralino calculations to evaluate the NSP density, also in the case that the NSP is the lighter stau, and show that the constraint from late NSP decays is respected only in a limited region of the CMSSM parameter space. In this region, gravitinos might constitute the dark matter.Comment: 15 pages, 12 figures, reference adde

    Supersymmetric Dark Matter in Light of WMAP

    Get PDF
    We re-examine the parameter space of the constrained minimal supersymmetric extension of the Standard Model (CMSSM), taking account of the restricted range of \Omega_{CDM} h^2 consistent with the WMAP data. This provides a significantly reduced upper limit on the mass of the lightest supersymmetric particle LSP: m_\chi 0, or \tan \beta < 30 and \mu < 0, thereby improving the prospects for measuring supersymmetry at the LHC, and increasing the likelihood that a 1-TeV linear e^+ e^- collider would be able to measure the properties of some supersymmetric particles

    Update on the Direct Detection of Supersymmetric Dark Matter

    Full text link
    We compare updated predictions for the elastic scattering of supersymmetric neutralino dark matter with the improved experimental upper limit recently published by CDMS II. We take into account the possibility that the \pi-nucleon \Sigma term may be somewhat larger than was previously considered plausible, as may be supported by the masses of exotic baryons reported recently. We also incorporate the new central value of m_t, which affects indirectly constraints on the supersymmetric parameter space, for example via calculations of the relic density. Even if a large value of \Sigma is assumed, the CDMS II data currently exclude only small parts of the parameter space in the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking Higgs, squark and slepton masses. None of the previously-proposed CMSSM benchmark scenarios is excluded for any value of \Sigma, and the CDMS II data do not impinge on the domains of the CMSSM parameter space favoured at the 90 % confidence level in a recent likelihood analysis. However, some models with non-universal Higgs, squark and slepton masses and neutralino masses \lappeq 700 GeV are excluded by the CDMS II data.Comment: 25 pages, 28 eps figure
    • 

    corecore