892 research outputs found
Quasi-SU(3) truncation scheme for even-even sd-shell nuclei
The Quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model
calculations for both even-even and odd-even nuclei. It manifests itself
through a dominance of single-particle and quadrupole-quadrupole terms in the
Hamiltonian used to describe well-deformed nuclei. A practical consequence of
the quasi-SU(3) symmetry is an efficient basis truncation scheme. In a recent
work was shown that when this type of Hamiltonian is diagonalized in an SU(3)
basis, only a few irreducible represntations (irreps) of SU(3) are needed to
describe the Yrast band, the leading S = 0 irrep augmented with the leading S =
1 irreps in the proton and neutron subspaces. In the present article the
quasi-SU(3) truncation scheme is used, in conjunction with a "realistic but
schematic" Hamiltonian that includes the most important multipole terms, to
describe the energy spectra and B(E2) transition strengths of 20-Ne, 22-Ne,
24-Mg and 28-Si. The effect of the size of the Hilbert space on both sets of
observables is discussed, as well as the structure of the Yrast band and the
importance of the various terms in the Hamiltonian.Comment: 30 pages, 8 figures. Submited to Nucl. Phys.
Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei
A pseudo shell SU(3) model description of normal parity bands in 159-Tb is
presented. The Hamiltonian includes spherical Nilsson single-particle energies,
the quadrupole-quadrupole and pairing interactions, as well as three rotor
terms. A systematic parametrization is introduced, accompained by a detailed
discussion of the effect each term in the Hamiltonian has on the energy
spectrum. Yrast and excited band wavefunctions are analyzed together with their
B(E2) values.Comment: 29 pages, 6 figure
Lines, Circles, Planes and Spheres
Let be a set of points in , no three collinear and not
all coplanar. If at most are coplanar and is sufficiently large, the
total number of planes determined is at least . For similar conditions and
sufficiently large , (inspired by the work of P. D. T. A. Elliott in
\cite{Ell67}) we also show that the number of spheres determined by points
is at least , and this bound is best
possible under its hypothesis. (By , we are denoting the
maximum number of three-point lines attainable by a configuration of
points, no four collinear, in the plane, i.e., the classic Orchard Problem.)
New lower bounds are also given for both lines and circles.Comment: 37 page
Neutron scattering and molecular correlations in a supercooled liquid
We show that the intermediate scattering function for neutron
scattering (ns) can be expanded naturely with respect to a set of molecular
correlation functions that give a complete description of the translational and
orientational two-point correlations in the liquid. The general properties of
this expansion are discussed with special focus on the -dependence and hints
for a (partial) determination of the molecular correlation functions from
neutron scattering results are given. The resulting representation of the
static structure factor is studied in detail for a model system using
data from a molecular dynamics simulation of a supercooled liquid of rigid
diatomic molecules. The comparison between the exact result for and
different approximations that result from a truncation of the series
representation demonstrates its good convergence for the given model system. On
the other hand it shows explicitly that the coupling between translational
(TDOF) and orientational degrees of freedom (ODOF) of each molecule and
rotational motion of different molecules can not be neglected in the
supercooled regime.Further we report the existence of a prepeak in the
ns-static structure factor of the examined fragile glassformer, demonstrating
that prepeaks can occur even in the most simple molecular liquids. Besides
examining the dependence of the prepeak on the scattering length and the
temperature we use the expansion of into molecular correlation
functions to point out intermediate range orientational order as its principle
origin.Comment: 13 pages, 7 figure
What can we learn from neutrinoless double beta decay experiments?
We assess how well next generation neutrinoless double beta decay and normal
neutrino beta decay experiments can answer four fundamental questions. 1) If
neutrinoless double beta decay searches do not detect a signal, and if the
spectrum is known to be inverted hierarchy, can we conclude that neutrinos are
Dirac particles? 2) If neutrinoless double beta decay searches are negative and
a next generation ordinary beta decay experiment detects the neutrino mass
scale, can we conclude that neutrinos are Dirac particles? 3) If neutrinoless
double beta decay is observed with a large neutrino mass element, what is the
total mass in neutrinos? 4) If neutrinoless double beta decay is observed but
next generation beta decay searches for a neutrino mass only set a mass upper
limit, can we establish whether the mass hierarchy is normal or inverted? We
base our answers on the expected performance of next generation neutrinoless
double beta decay experiments and on simulations of the accuracy of
calculations of nuclear matrix elements.Comment: Added reference
Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12
The present work reports synthesis, as well as a detailed and careful
characterization of structural, magnetic, and dielectric properties of
differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this
purpose, neutron and x-ray powder diffraction, SQUID measurements, and
dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO
ceramics were investigated in great detail to document the influence of
low-level doping with 3d metals on the antiferromagnetic structure and
dielectric properties. In the light of possible magnetoelectric coupling in
these doped ceramics, the dielectric measurements were also carried out in
external magnetic fields up to 7 T, showing a minor but significant dependence
of the dielectric constant on the applied magnetic field. Undoped CCTO is
well-known for its colossal dielectric constant in a broad frequency and
temperature range. With the present extended characterization of doped as well
as undoped CCTO, we want to address the question why doping with only 1% Mn or
0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor
of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni
doping changes the dielectric properties only slightly. In addition,
diffraction experiments and magnetic investigations were undertaken to check
for possible correlations of the magnitude of the colossal dielectric constants
with structural details or with magnetic properties like the magnetic ordering,
the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that
while the magnetic ordering temperature and the effective moment of all
investigated CCTO ceramics are rather similar, there is a dramatic influence of
doping and tempering time on the Curie-Weiss constant.Comment: 10 pages, 11 figure
Optimal designs for rational function regression
We consider optimal non-sequential designs for a large class of (linear and
nonlinear) regression models involving polynomials and rational functions with
heteroscedastic noise also given by a polynomial or rational weight function.
The proposed method treats D-, E-, A-, and -optimal designs in a
unified manner, and generates a polynomial whose zeros are the support points
of the optimal approximate design, generalizing a number of previously known
results of the same flavor. The method is based on a mathematical optimization
model that can incorporate various criteria of optimality and can be solved
efficiently by well established numerical optimization methods. In contrast to
previous optimization-based methods proposed for similar design problems, it
also has theoretical guarantee of its algorithmic efficiency; in fact, the
running times of all numerical examples considered in the paper are negligible.
The stability of the method is demonstrated in an example involving high degree
polynomials. After discussing linear models, applications for finding locally
optimal designs for nonlinear regression models involving rational functions
are presented, then extensions to robust regression designs, and trigonometric
regression are shown. As a corollary, an upper bound on the size of the support
set of the minimally-supported optimal designs is also found. The method is of
considerable practical importance, with the potential for instance to impact
design software development. Further study of the optimality conditions of the
main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory
and additional example
Optical immersion of mid-infrared LEDs and photodiodes for gas-sensing applications
The high gains in performance predicted for optical immersion are difficult to achieve in practice due to total internal reflection at the lens/detector interface. By reducing the air gap at this interface optical tunneling becomes possible and the predicted gains can be realized in practical devices. Using this technique we have demonstrated large performance gains by optically immersing mid-infrared heterostructure InA1Sb LEDs and photodiodes using hypershperical germanium lenses. The development of an effective method of optical immersion that gives excellent optical coupling has produced a photodiode with a peak room temperature detectivity (D*) of 5.3 x 109 cmHz½W-1 at λpeak=5.4μm and a 40° field of view. A hyperspherically immersed LED showed a f-fold improvement in the external efficiency, and a 3-fold improvement in the directionality compared with a conventional planar LED for f/2 optical systems. The incorporation of these uncooled devices in a White cell produced a NO2 gas sensing system with 2 part-per-million sensitivity, with an LED drive current of <5mA. These results represent a significant advance in the use of solid state devices for portable gas sensing systems
N-body simulations of gravitational dynamics
We describe the astrophysical and numerical basis of N-body simulations, both
of collisional stellar systems (dense star clusters and galactic centres) and
collisionless stellar dynamics (galaxies and large-scale structure). We explain
and discuss the state-of-the-art algorithms used for these quite different
regimes, attempt to give a fair critique, and point out possible directions of
future improvement and development. We briefly touch upon the history of N-body
simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu
- …
