2,836 research outputs found

    Leaf Temperatures in a Gas Exchange Chamber and in the Open Air

    Get PDF
    Leaf temperatures in a Koch fully climatized gas-exchange chamber as designed by Siemens and in a similarly equipped open-air reference were measured with horizontally and vertically inserted thermocouples on Nerium oleander L. On a sunny day with only little air movement and an average air temperature of 20.4 °C, leaf over-temperatures in the gas-exchange chamber were lower on average by 2.2 K. The extent of reduction of over-temperature in the chamber is determined by the reduced global radiation in the chamber and the differences of wind velocities in chamber and reference. Differences in the ventilation intensity in the chamber have no demonstrable influence on the leaf over-temperatures. The over-temperatures of the reference leaves, on the other hand, depend to a large degree on air velocity. The changed radiation and air flow conditions in the chamber as compared with open-air conditions have consequences for the physiological reactions of the enclosed plant and must be taken into account when comparing results from gas-exchange measurements with open-air conditions. For further improvements of gas-exchange measurement equipment, air flow conditions and radiation quantity and quality might be starting point

    Vista/F-16 Multi-Axis Thrust Vectoring (MATV) control law design and evaluation

    Get PDF
    For the Multi-Axis Thrust Vectoring (MATV) program, a new control law was developed using multi-axis thrust vectoring to augment the aircraft's aerodynamic control power to provide maneuverability above the normal F-16 angle of attack limit. The control law architecture was developed using Lockheed Fort Worth's offline and piloted simulation capabilities. The final flight control laws were used in flight test to demonstrate tactical benefits gained by using thrust vectoring in air-to-air combat. Differences between the simulator aerodynamics data base and the actual aircraft aerodynamics led to significantly different lateral-directional flying qualities during the flight test program than those identified during piloted simulation. A 'dial-a-gain' flight test control law update was performed in the middle of the flight test program. This approach allowed for inflight optimization of the aircraft's flying qualities. While this approach is not preferred over updating the simulator aerodynamic data base and then updating the control laws, the final selected gain set did provide adequate lateral-directional flying qualities over the MATV flight envelope. The resulting handling qualities and the departure resistance of the aircraft allowed the 422nd_squadron pilots to focus entirely on evaluating the aircraft's tactical utility

    Expression of major photosynthetic and salt-resistance genes in invasive reed lineages grown under elevated CO2 and temperature

    Get PDF
    It is important to investigate the molecular causes of the variation in ecologically important traits to fully understand phenotypic responses to climate change. In the Mississippi River Delta, two distinct, sympatric invasive lineages of common reed (Phragmites australis) are known to differ in several ecophysiological characteristics and are expected to become more salt resistant due to increasing atmospheric CO2 and temperature. We investigated whether different patterns of gene expression can explain their ecophysiological differences and increased vigor under future climatic conditions. We compared the transcript abundance of photosynthetic genes of the Calvin cycle (Rubisco small subunit, RbcS; Phosphoglycerate kinase, PGK; Phosphoribulokinase, PRK), genes related with salt transport (Na+/H+ antiporter, PhaNHA) and oxidative stress response genes (Manganese Superoxide dismutase, MnSOD; Glutathione peroxidase, GPX), and the total aboveground biomass production between two genotypes representing the two lineages. The two genotypes (Delta-type, Mediterranean lineage, and EU-type, Eurasian lineage) were grown under an ambient and a future climate scenario with simultaneously elevated CO2 and temperature, and under two different soil salinities (0‰ or 20‰). We found neither differences in the aboveground biomass production nor the transcript abundances of the two genotypes, but soil salinity significantly affected all the investigated parameters, often interacting with the climatic conditions. At 20‰ salinity, most genes were higher expressed in the future than in the ambient climatic conditions. Higher transcription of the genes suggests higher abundance of the protein they code for, and consequently increased photosynthate production, improved stress responses, and salt exclusion. Therefore, the higher expression of these genes most likely contributed to the significantly ameliorated salinity impact on the aboveground biomass production of both P. australis genotypes under elevated temperature and CO2. Although transcript abundances did not explain differences between the lineages, they correlated with the increased vigor of both lineages under anticipated future climatic conditions. Two sympatric, highly invasive lineages of Phragmites australis from North America differ in their ecophysiological responses to salinity and climate, and differences in gene expression may cause these different phenotypic traits. Under a future climatic scenario and high soil salinity, the expression of photosynthetic and salt-stress related genes was increased in both lineages, relative to the ambient climate, but the phenotypic differences between the lineages were not explained by the gene expression. Similar changes in gene expression may therefore facilitate salt resistance and an increased invasive vigour of both reed lineages under the changing climate

    Dynamics of the Light-Cone Zero Modes: Theta Vacuum of the Massive Schwinger Model

    Full text link
    The massive Schwinger model is quantized on the light cone with great care on the bosonic zero modes by putting the system in a finite (light-cone) spatial box. The zero mode of AA_{-} survives Dirac's procedure for the constrained system as a dynamical degree of freedom. After regularization and quantization, we show that the physical space condition is consistently imposed and relates the fermion Fock states to the zero mode of the gauge field. The vacuum is obtained by solving a Schr\"odinger equation in a periodic potential, so that the theta is understood as the Bloch momentum. We also construct a one-meson state in the fermion-antifermion sector and obtained the Schr\"odinger equation for it.Comment: 23 pages, RevTex, no figure

    Electromagnetic duality and light-front coordinates

    Get PDF
    We review the light-front Hamiltonian approach for the Abelian gauge theory in 3+1 dimensions, and then study electromagnetic duality in this framework.Comment: 18 pages, LaTeX, 2 references and a typo in an eqn. (19) corrected, minor revisions in response to referee's repor

    Bubble Shape Oscillations and the Onset of Sonoluminescence

    Get PDF
    An air bubble trapped in water by an oscillating acoustic field undergoes either radial or nonspherical pulsations depending on the strength of the forcing pressure. Two different instability mechanisms (the Rayleigh--Taylor instability and parametric instability) cause deviations from sphericity. Distinguishing these mechanisms allows explanation of many features of recent experiments on sonoluminescence, and suggests methods for finding sonoluminescence in different parameter regimes.Comment: Phys. Rev. Lett., in pres

    A new invertebrate member of the p53 gene family is developmentally expressed and responds to polychlorinated biphenyls.

    Get PDF
    The cell-cycle checkpoint protein p53 both directs terminal differentiation and protects embryos from DNA damage. To study invertebrate p53 during early development, we identified three differentially expressed p53 family members (p53, p97, p120) in the surf clam, Spisula solidissima. In these mollusks, p53 and p97 occur in both embryonic and adult tissue, whereas p120 is exclusively embryonic. We sequenced, cloned, and characterized p120 cDNA. The predicted protein, p120, resembles p53 across all evolutionarily conserved regions and contains a C-terminal extension with a sterile alpha motif (SAM) as in p63 and p73. These vertebrate forms of p53 are required for normal inflammatory, epithelial, and neuronal development. Unlike clam p53 and p97, p120 mRNA and protein levels are temporally expressed in embryos, with mRNA levels decreasing with increasing p120 protein (R(2) = 0.97). Highest surf clam p120 mRNA levels coincide with the onset of neuronal growth. In earlier work we have shown that neuronal development is altered by exposure to polychlorinated biphenyls (PCBs), a neurotoxic environmental contaminant. In this study we show that PCBs differentially affect expression of the three surf clam p53 family members. p120 mRNA and protein are reduced the most and earliest in development, p97 protein shows a smaller and later reduction, and p53 protein levels do not change. For the first time we report that unlike p53 and p97, p120 is specifically embryonic and expressed in a time-dependent manner. Furthermore, p120 responds to PCBs by 48 hr when PCB-induced suppression of the serotonergic nervous system occurs

    Dynamic Versus Static Oxidation of Nb/Al-AlOx_x/Nb Trilayer

    Full text link
    High quality Nb-based superconductor-insulator-superconductor (SIS) junctions with Al oxide (AlOx_x) tunnel barriers grown from Al overlayers are widely reported in the literature. However, the thin barriers required for high critical current density (Jc_c) junctions exhibit defects that result in significant subgap leakage current that is detrimental for many applications. High quality, high-Jc_c junctions can be realized with AlNx_x barriers, but control of Jc_c is more difficult than with AlOx_x. It is therefore of interest to study the growth of thin AlOx_x barriers with the ultimate goal of achieving high quality, high-Jc_c AlOx_x junctions. In this work, 100\%\ O2_2 and 2\%\ O2_2 in Ar gas mixtures are used both statically and dynamically to grow AlOx_x tunnel barriers over a large range of oxygen exposures. In situ ellipsometry is used for the first time to extensively measure AlOx_x tunnel barrier growth in real time, revealing a number of unexpected patterns. Finally, a set of test junction wafers was fabricated that exhibited the well-known dependence of Jc_c on oxygen exposure (E) in order to further validate the experimental setup
    corecore