1,218 research outputs found

    In an in vitro model of human tuberculosis, monocyte-microglial networks regulate matrix metalloproteinase-1 and -3 gene expression and secretion via a p38 mitogen activated protein kinase-dependent pathway.

    Get PDF
    BACKGROUND: Tuberculosis (TB) of the central nervous system (CNS) is characterized by extensive tissue inflammation, driven by molecules that cleave extracellular matrix such as matrix metalloproteinase (MMP)-1 and MMP-3. However, relatively little is known about the regulation of these MMPs in the CNS. METHODS: Using a cellular model of CNS TB, we stimulated a human microglial cell line (CHME3) with conditioned medium from Mycobacterium tuberculosis-infected primary human monocytes (CoMTb). MMP-1 and MMP-3 secretion was detected using ELISAs confirmed with casein zymography or western blotting. Key results of a phospho-array profile that detects a wide range of kinase activity were confirmed with phospho-Western blotting. Chemical inhibition (SB203580) of microglial cells allowed investigation of expression and secretion of MMP-1 and MMP-3. Finally we used promoter reporter assays employing full length and MMP-3 promoter deletion constructs. Student's t-test was used for comparison of continuous variables and multiple intervention experiments were compared by one-way ANOVA with Tukey's correction for multiple pairwise comparisons. RESULTS: CoMTb up-regulated microglial MMP-1 and MMP-3 secretion in a dose- and time-dependent manner. The phospho-array profiling showed that the major increase in kinase activity due to CoMTb stimulation was in p38 mitogen activated protein kinase (MAPK), principally the α and γ subunits. p38 phosphorylation was detected at 15 minutes, with a second peak of activity at 120 minutes. High basal extracellular signal-regulated kinase activity was further increased by CoMTb. Secretion and expression of MMP-1 and MMP-3 were both p38 dependent. CoMTb stimulation of full length and MMP-3 promoter deletion constructs demonstrated up-regulation of activity in the wild type but a suppression site between -2183 and -1612 bp. CONCLUSIONS: Monocyte-microglial network-dependent MMP-1 and MMP-3 gene expression and secretion are dependent upon p38 MAPK in tuberculosis. p38 is therefore a potential target for adjuvant therapy in CNS TB

    Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis.

    Get PDF
    BACKGROUND: Central nervous system tuberculosis (CNS-TB) may be fatal even with treatment. Neutrophils are the key mediators of TB immunopathology, and raised CSF matrix metalloproteinase-9 (MMP-9) which correlates to neutrophil count in CNS-TB is associated with neurological deficit and death. The mechanisms by which neutrophils drive TB-associated CNS matrix destruction are not clearly defined. METHODS: Human brain biopsies with histologically proven CNS-TB were stained for neutrophils, neutrophil elastase, and MMP-9. Neutrophil MMP-9 secretion and gene expression were analyzed using Luminex and real-time PCR. Type IV collagen degradation was evaluated using confocal microscopy and quantitative fluorescent assays. Intracellular signaling pathways were investigated by immunoblotting and chemical inhibitors. RESULTS: MMP-9-expressing neutrophils were present in tuberculous granulomas in CNS-TB and neutrophil-derived MMP-9 secretion was upregulated by Mycobacterium tuberculosis (M.tb). Concurrent direct stimulation by M.tb and activation via monocyte-dependent networks had an additive effect on neutrophil MMP-9 secretion. Destruction of type IV collagen, a key component of the blood-brain barrier, was inhibited by neutralizing neutrophil MMP-9. Monocyte-neutrophil networks driving MMP-9 secretion in TB were regulated by MAP-kinase and Akt-PI3 kinase pathways and the transcription factor NF-kB. TNFα neutralization suppressed MMP-9 secretion to baseline while dexamethasone did not. CONCLUSIONS: Multiple signaling paths regulate neutrophil-derived MMP-9 secretion, which is increased in CNS-TB. These paths may be better targets for host-directed therapies than steroids currently used in CNS-TB

    Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte Migration and Collagen Destruction in Tuberculosis

    Get PDF
    Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis-infected monocytes degraded collagen matrix in an MT1-MMP-dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte-monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein-coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis-infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network-dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration

    Hand lay-up of complex geometries-prediction, capture and feedback

    Get PDF

    A Typology for a Social Justice Approach to Assessment: Learning from Universal Design and Culturally Sustaining Pedagogy

    Get PDF
    This paper aims to provide a tentative roadmap for ensuring that higher education policy makers and practitioners are apprised of what might be done to advance a concept of socially just assessment praxis. It extends current thinking around the notion of social justice approaches to assessment by further developing the conceptual framework proposed in McArthur's recent work (2016). It does so by extending understandings of how a socially just perspective might be realised. Drawing upon recent conceptual developments within both Universal Design for Learning (UDL) and Culturally Sustaining Pedagogy (CSP), the paper proposes a typology for praxis and organisational change. Crucially, this typology focuses upon enhancing learning outcomes for all learners, but it is particularly concerned with enhancing educational experiences and learning outcomes for students that have been systematically marginalised by the normative procedural practices that have traditionally informed the nature of supposedly objective assessment

    Science Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA’s Van Allen Probes Mission

    Get PDF
    The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA’s Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10’s of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results

    Upgrade of the HadGEM3-A based attribution system to high resolution and a new validation framework for probabilistic event attribution

    Get PDF
    We present a substantial upgrade of the Met Office system for the probabilistic attribution of extreme weather and climate events with higher horizontal and vertical resolution (60 km mid-latitudes and 85 vertical levels), the latest Hadley Centre atmospheric and land model (ENDGame dynamics with GA6.0 science and JULES at GL6.0) as well as an updated forcings set. A new set of experiments designed for the evaluation and implementation of an operational attribution service are described which consist of pairs of multi-decadal stochastic physics ensembles continued on a season by season basis by large ensembles that are able to sample extreme at- mospheric states possible in the recent past. Diagnostics from these experiments form the HadGEM3-A contribution to the international Climate of the 20th Century Plus (C20Cþ) project and were analysed under the European Climate and Weather Events: Interpretation and Attribution (EUCLEIA) event attribution project as well as contributing to the Climate Science for Service Partnership (CSSP)-China programme. After discussing the framing issues surrounding questions that can be asked with our system we construct a novel approach to the evaluation of atmosphere-only ensembles intended for event attribution, in the process highlighting and clarifying the distinction between hindcast skill and model performance. A framework based around assessing model representation of predictable components and ensuring exchangeability of model and real world statistics leads to a form of detection and attribution to boundary condition forcing as a means of quantifying one degree of freedom of potential model error and allowing for the bias correction of event probabilities and resulting probability ratios. This method is then applied systematically across the globe to assess contributions from anthropogenic influence and specific boundary conditions to the changing probability of observed and record seasonal mean temperatures of four recent 3-month seasons from March 2016–February 2017
    corecore