80 research outputs found

    Oral nutrition supplements and between-meal snacks for nutrition therapy in patients with COPD identified as at nutritional risk: a randomised feasibility trial.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadINTRODUCTION: Intervention studies have mainly used oral nutritional supplements (ONS) for the management of patients with chronic obstructive pulmonary disease (COPD) identified as at nutritional risk. In this 12-month randomised feasibility trial, we assessed the (1) feasibility of the recruitment, retention and provision of two interventions: ONS and between-meal snacks (snacks) and (2) the potential impact of the provision of snacks and ONS on body weight and quality of life in patients with COPD. METHODS : Hospitalised patients with COPD, at nutritional risk, were randomised to ONS (n=19) or snacks (n=15) providing 600 kcal and 22 g protein a day in addition to regular daily diet. The intervention started in hospital and was continued for 12 months after discharge from the hospital. RESULTS : Study recruitment rate was n=34 (45%) and retention rate at 12 months was similar for both groups: n=13 (68%) in the ONS group and n=10 (67%) in the Snacks group. Both groups gained weight from baseline to 12 months (2.3±4.6 kg (p=0.060) in the ONS group and 4.4±6.4 kg (p=0.030) in the Snacks group). The St George's Respiratory Questionnaire total score improved from baseline to 12 months in both groups (score 3.9±11.0 (p=0.176) in the ONS group and score 8.9±14.1 (p=0.041) in the Snacks group). DISCUSSION : In patients with COPD who are at nutritional risk snacks are at least as feasible and effective as ONS, however, adequately powered trials that take account of the difficulties in recruiting this patient group are required to confirm this effect.Icelandic Research Fund of the Icelandic Centre for Research Eimskip University Fund Landspitali University Hospital Research Fund Nutricia (Icepharma

    A critical view of the use of predictive energy equations for the identification of hypermetabolism in motor neuron disease : a pilot study

    Get PDF
    Background and Aims People living with motor neuron disease (MND) frequently struggle to consume an optimal caloric intake. Often compounded by hypermetabolism, this can lead to dysregulated energy homeostasis, prompting the onset of malnutrition and associated weight loss. This is associated with a poorer prognosis and reduced survival. It is therefore important to establish appropriate nutritional goals to ensure adequate energy intake. This is best done by measuring resting energy expenditure (mREE) using indirect calorimetry. However, indirect calorimetry is not widely available in clinical practice, thus dietitians caring for people living with MND frequently use energy equations to predict resting energy expenditure (pREE) and estimate caloric requirements. Energy prediction equations have previously been shown to underestimate resting energy expenditure in over two-thirds of people living with MND. Hypermetabolism has previously been identified using the metabolic index. The metabolic index is a ratio of mREE to pREE, whereby an increase of mREE by ≥ 110% indicates hypermetabolism. We aim to critically reflect on the use of the Harris-Benedict (1919) and Henry (2005) energy prediction equations to inform a metabolic index to indicate hypermetabolism in people living with MND. Methods mREE was derived using VO₂ and VCO₂ measurements from a GEMNutrition indirect calorimeter. pREE was estimated by Harris-Benedict (HB) (1919), Henry (2005) and kcal/kg/day predictive energy equations. The REE variation, described as the percentage difference between mREE and pREE, determined the accuracy of pREE ([pREE-mREE]/mREE) x 100), with accuracy defined as ≤ ± 10%. A metabolic index threshold of ≥ 110% was used to classify hypermetabolism. All resting energy expenditure data are presented as kcal/24hr. Results Sixteen people living with MND were included in the analysis. The mean mREE was 1642 kcal/24hr ranging between 1110 and 2015 kcal/24hr. When REE variation was analysed for the entire cohort, the HB, Henry and kcal/kg/day equations all overestimated REE, but remained within the accuracy threshold (mean values were 2.81% for HB, 4.51% for Henry and 8.00% for kcal/kg/day). Conversely, inter-individual REE variation within the cohort revealed HB and Henry equations both inaccurately reflected mREE for 68.7% of participants, with kcal/kg/day inaccurately reflecting 41.7% of participants. Whilst the overall cohort was not classified as hypermetabolic (mean values were 101.04% for HB, 98.62% for Henry and 95.64% for kcal/kg/day), the metabolic index ranges within the cohort were 70.75% - 141.58% for HB, 72.82% - 127.69% for Henry and 66.09% – 131.58% for kcal/kg/day, indicating both over- and under-estimation of REE by these equations. We have shown that pREE correlates with body weight (kg), whereby the lighter the individual, the greater the underprediction of REE. When applied to the metabolic index, this underprediction biases towards the classification of hypermetabolism in lighter individuals. Conclusion Whilst predicting resting energy expenditure using the HB, Henry or kcal/kg/day equations accurately reflects derived mREE at group level, these equations are not suitable for informing resting energy expenditure and classification of hypermetabolism when applied to individuals in clinical practice

    Combined point of care nucleic acid and antibody testing for SARS-CoV-2 following emergence of D614G Spike Variant

    Get PDF
    Rapid COVID-19 diagnosis in hospital is essential, though complicated by 30-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant now dominates the pandemic and it is unclear how serological tests designed to detect anti-Spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95CI 57.8-92.9%) by rapid NAAT alone. Combined point of care antibody test and rapid NAAT is not impacted by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    Understanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    Understanding the drivers for spread of SARS-CoV-2 in higher education settings is important to limit transmission between students, and onward spread into at-risk populations. In this study, we prospectively sequenced 482 SARS-CoV-2 isolates derived from asymptomatic student screening and symptomatic testing of students and staff at the University of Cambridge from 5 October to 6 December 2020. We performed a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. After a limited number of viral introductions into the university, the majority of student cases were linked to a single genetic cluster, likely dispersed across the university following social gatherings at a venue outside the university. We identified considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and dramatically reduced following a national lockdown. We observed that transmission clusters were largely segregated within the university or within the community. This study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics
    • …
    corecore