19 research outputs found

    Coordinate regulation of fibronectin matrix assembly by the plasminogen activator system and vitronectin in human osteosarcoma cells

    Get PDF
    BACKGROUND: Plasminogen activators are known to play a key role in the remodeling of bone matrix which occurs during tumor progression, bone metastasis and bone growth. Dysfunctional remodeling of bone matrix gives rise to the osteoblastic and osteolytic lesions seen in association with metastatic cancers. The molecular mechanisms responsible for the development of these lesions are not well understood. Studies were undertaken to address the role of the plasminogen activator system in the regulation of fibronectin matrix assembly in the osteoblast-like cell line, MG-63. RESULTS: Treatment of MG-63 cells with P25, a peptide ligand for uPAR, resulted in an increase in assembly of fibronectin matrix which was associated with an increase in the number of activated β1 integrins on the cell surface. Overexpression of uPAR in MG-63 cells increased the effect of P25 on fibronectin matrix assembly and β(1 )integrin activation. P25 had no effect on uPAR null fibroblasts, confirming a role for uPAR in this process. The addition of plasminogen activator inhibitor Type I (PAI-1) to cells increased the P25-induced fibronectin polymerization, as well as the number of activated integrins. This positive regulation of PAI-1 on fibronectin assembly was independent of PAI-1's anti-proteinase activity, but acted through PAI-1 binding to the somatomedin B domain of vitronectin. CONCLUSION: These results indicate that vitronectin modulates fibronectin matrix assembly in osteosarcoma cells through a novel mechanism involving cross-talk through the plasminogen activator system

    Endogenous RhoG Is Rapidly Activated after Epidermal Growth Factor Stimulation through Multiple Guanine-Nucleotide Exchange Factors

    Get PDF
    In this article it is shown that EGF stimulation leads to rapid activation of RhoG through Vav GEFs and the GEF PLEKHG6. Importantly, different cellular responses induced by EGF are determined by the available GEFs. Furthermore, this article presents results showing that EGF-stimulated cell migration and EGFR internalization are regulated by RhoG.RhoG is a member of the Rac-like subgroup of Rho GTPases and has been linked to a variety of different cellular functions. Nevertheless, many aspects of RhoG upstream and downstream signaling remain unclear; in particular, few extracellular stimuli that modulate RhoG activity have been identified. Here, we describe that stimulation of epithelial cells with epidermal growth factor leads to strong and rapid activation of RhoG. Importantly, this rapid activation was not observed with other growth factors tested. The kinetics of RhoG activation after epidermal growth factor (EGF) stimulation parallel the previously described Rac1 activation. However, we show that both GTPases are activated independently of one another. Kinase inhibition studies indicate that the rapid activation of RhoG and Rac1 after EGF treatment requires the activity of the EGF receptor kinase, but neither phosphatidylinositol 3-kinase nor Src kinases. By using nucleotide-free RhoG pull-down assays and small interfering RNA-mediated knockdown studies, we further show that guanine-nucleotide exchange factors (GEFs) of the Vav family mediate EGF-induced rapid activation of RhoG. In addition, we found that in certain cell types the recently described RhoG GEF PLEKHG6 can also contribute to the rapid activation of RhoG after EGF stimulation. Finally, we present results that show that RhoG has functions in EGF-stimulated cell migration and in regulating EGF receptor internalization

    The RhoA Guanine Nucleotide Exchange Factor, LARG, Mediates ICAM-1-Dependent Mechanotransduction in Endothelial Cells To Stimulate Transendothelial Migration

    Get PDF
    RhoA-mediated cytoskeletal rearrangements in endothelial cells (ECs) play an active role in leukocyte transendothelial cell migration (TEM), a normal physiological process in which leukocytes cross the endothelium to enter the underlying tissue. Although much has been learned about RhoA signaling pathways downstream from ICAM-1 in ECs, little is known about the consequences of the tractional forces that leukocytes generate on ECs as they migrate over the surface before TEM. We have found that after applying mechanical forces to ICAM-1 clusters, there is an increase in cellular stiffening and enhanced RhoA signaling compared with ICAM-1 clustering alone. We have identified that leukemia-associated Rho guanine nucleotide exchange factor (LARG), also known as Rho GEF 12 (ARHGEF12) acts downstream of clustered ICAM-1 to increase RhoA activity, and that this pathway is further enhanced by mechanical force on ICAM-1. Depletion of LARG decreases leukocyte crawling and inhibits TEM. To our knowledge, this is the first report of endothelial LARG regulating leukocyte behavior and EC stiffening in response to tractional forces generated by leukocytes

    Tumor Endothelial Cells with Distinct Patterns of TGF -Driven Endothelial-to-Mesenchymal Transition

    Get PDF
    Endothelial-to-mesenchymal transition (EndMT) occurs during development and underlies the pathophysiology of multiple diseases. In tumors, unscheduled EndMT generates cancer-associated myofibroblasts that fuel inflammation and fibrosis, and may contribute to vascular dysfunction that promotes tumor progression. We report that freshly isolated subpopulations of tumor-specific endothelial cells (TEC) from a spontaneous mammary tumor model undergo distinct forms of EndMT in response to TGFβ stimulation. Whereas some TEC strikingly up-regulate alpha smooth muscle actin (SMA), a principal marker of EndMT and activated myofibroblasts, counterpart normal mammary gland endothelial cells (NEC) showed little change in SMA expression after TGFβ treatment. Compared with NEC, SMA+ TEC were 40 % less motile in wound healing assays and formed more stable vascular-like networks in vitro when challenged with TGFβ. Lineage tracing using ZsGreenCdh5-Cre reporter mice confirmed that only a fraction of vessels in breast tumors contain SMA+ TEC, suggesting that not all endothelial cells (EC) respond identically to TGFβ in vivo. Indeed, examination of 84 TGFβ-regulated target genes revealed entirely different genetic signatures in TGFβ-stimulated NEC and TEC cultures. Finally, we found that basic FGF (bFGF) exerts potent inhibitory effects on many TGFβ-regulated genes but operates in tandem with TGFβ to up-regulate others. EC challenged with TGFβ secrete bFGF which blocks SMA expression in secondary cultures suggesting a cell-autonomous or lateral-inhibitory mechanism for impeding mesenchymal differentiation. Together, our results suggest that TGFβ-driven EndMT produces a spectrum of EC phenotypes with different functions that could underlie the plasticity and heterogeneity of the tumor vasculature

    London Trauma Conference 2015

    Full text link

    The role of endothelial MERTK during the inflammatory response in lungs.

    No full text
    As a key homeostasis regulator in mammals, the MERTK receptor tyrosine kinase is crucial for efferocytosis, a process that requires remodeling of the cell membrane and adjacent actin cytoskeleton. Membrane and cytoskeletal reorganization also occur in endothelial cells during inflammation, particularly during neutrophil transendothelial migration (TEM) and during changes in permeability. However, MERTK's function in endothelial cells remains unclear. This study evaluated the contribution of endothelial MERTK to neutrophil TEM and endothelial barrier function. In vitro experiments using primary human pulmonary microvascular endothelial cells found that neutrophil TEM across the endothelial monolayers was enhanced when MERTK expression in endothelial cells was reduced by siRNA knockdown. Examination of endothelial barrier function revealed increased passage of dextran across the MERTK-depleted monolayers, suggesting that MERTK helps maintain endothelial barrier function. MERTK knockdown also altered adherens junction structure, decreased junction protein levels, and reduced basal Rac1 activity in endothelial cells, providing potential mechanisms of how MERTK regulates endothelial barrier function. To study MERTK's function in vivo, inflammation in the lungs of global Mertk-/- mice was examined during acute pneumonia. In response to P. aeruginosa, more neutrophils were recruited to the lungs of Mertk-/- than wildtype mice. Vascular leakage of Evans blue dye into the lung tissue was also greater in Mertk-/- mice. To analyze endothelial MERTK's involvement in these processes, we generated inducible endothelial cell-specific (iEC) Mertk-/- mice. When similarly challenged with P. aeruginosa, iEC Mertk-/- mice demonstrated no difference in neutrophil TEM into the inflamed lungs or in vascular permeability compared to control mice. These results suggest that deletion of MERTK in human pulmonary microvascular endothelial cells in vitro and in all cells in vivo aggravates the inflammatory response. However, selective MERTK deletion in endothelial cells in vivo failed to replicate this response

    The RhoA Guanine Nucleotide Exchange Factor, LARG, Mediates ICAM-1–Dependent Mechanotransduction in Endothelial Cells To Stimulate Transendothelial Migration

    No full text
    RhoA-mediated cytoskeletal rearrangements in endothelial cells (ECs) play an active role in leukocyte transendothelial cell migration (TEM), a normal physiological process in which leukocytes cross the endothelium to enter the underlying tissue. Although much has been learned about RhoA signaling pathways downstream from ICAM-1 in ECs, little is known about the consequences of the tractional forces that leukocytes generate on ECs as they migrate over the surface before TEM. We have found that after applying mechanical forces to ICAM-1 clusters, there is an increase in cellular stiffening and enhanced RhoA signaling compared with ICAM-1 clustering alone. We have identified that leukemia-associated Rho guanine nucleotide exchange factor (LARG), also known as Rho GEF 12 (ARHGEF12) acts downstream of clustered ICAM-1 to increase RhoA activity, and that this pathway is further enhanced by mechanical force on ICAM-1. Depletion of LARG decreases leukocyte crawling and inhibits TEM. To our knowledge, this is the first report of endothelial LARG regulating leukocyte behavior and EC stiffening in response to tractional forces generated by leukocytes

    The Role of Vascular Endothelial Growth Factor-Induced Activation of NADPH Oxidase in Choroidal Endothelial Cells and Choroidal Neovascularization

    Get PDF
    Rac1, a subunit of NADPH oxidase, plays an important role in directed endothelial cell motility. We reported previously that Rac1 activation was necessary for choroidal endothelial cell migration across the retinal pigment epithelium, a critical step in the development of vision-threatening neovascular age-related macular degeneration. Here we explored the roles of Rac1 and NADPH oxidase activation in response to vascular endothelial growth factor treatment in vitro and in a model of laser-induced choroidal neovascularization. We found that vascular endothelial growth factor induced the activation of Rac1 and of NADPH oxidase in cultured human choroidal endothelial cells. Further, vascular endothelial growth factor led to heightened generation of reactive oxygen species from cultured human choroidal endothelial cells, which was prevented by the NADPH oxidase inhibitors, apocynin and diphenyleneiodonium, or the antioxidant, N-acetyl-l-cysteine. In a model of laser-induced injury, inhibition of NADPH oxidase with apocynin significantly reduced reactive oxygen species levels as measured by dihydroethidium fluorescence and the volume of laser-induced choroidal neovascularization. Mice lacking functional p47phox, a subunit of NADPH oxidase, had reduced dihydroethidium fluorescence and choroidal neovascularization compared with wild-type controls. Taken together, these results indicate that vascular endothelial growth factor activates Rac1 upstream from NADPH oxidase in human choroidal endothelial cells and increases generation of reactive oxygen species, contributing to choroidal neovascularization. These steps may contributed to the pathology of neovascular age-related macular degeneration

    Rap1 GTPase Inhibits Tumor Necrosis Factor-α–Induced Choroidal Endothelial Migration via NADPH Oxidase– and NF-κB–Dependent Activation of Rac1

    No full text
    Macrophage-derived tumor necrosis factor (TNF)-α has been found in choroidal neovascularization (CNV) surgically removed from patients with age-related macular degeneration. However, the role of TNF-α in CNV development remains unclear. In a murine laser-induced CNV model, compared with un-lasered controls, TNF-α mRNA was increased in retinal pigment epithelial and choroidal tissue, and TNF-α colocalized with lectin-stained migrating choroidal endothelial cells (CECs). Inhibition of TNF-α with a neutralizing antibody reduced CNV volume and reactive oxygen species (ROS) level around CNV. In CECs, pretreatment with the antioxidant apocynin or knockdown of p22phox, a subunit of NADPH oxidase, inhibited TNF-α–induced ROS generation. Apocynin reduced TNF-α–induced NF-κB and Rac1 activation, and inhibited TNF-α–induced CEC migration. TNF-α–induced Rac1 activation and CEC migration were inhibited by NF-κB inhibitor Bay11-7082. Overexpression of Rap1a prevented TNF-α–induced ROS generation and reduced NF-κB and Rac1 activation. Activation of Rap1 by 8-(4-chlorophenylthio)adenosine-2′-O-Me-cAMP prevented TNF-α–induced CEC migration and reduced laser-induced CNV volume, ROS generation, and activation of NF-κB and Rac1. These findings provide evidence that active Rap1a inhibits TNF-α–induced CEC migration by inhibiting NADPH oxidase-dependent NF-κB and Rac1 activation and suggests that Rap1a de-escalates CNV development by interfering with ROS-dependent signaling in several steps of the pathogenic process
    corecore