40 research outputs found

    Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation.

    Get PDF
    During heart transplantation, storage in cold preservation solution is thought to protect the organ by slowing metabolism; by providing osmotic support; and by minimising ischaemia-reperfusion (IR) injury upon transplantation into the recipient1,2. Despite its widespread use our understanding of the metabolic changes prevented by cold storage and how warm ischaemia leads to damage is surprisingly poor. Here, we compare the metabolic changes during warm ischaemia (WI) and cold ischaemia (CI) in hearts from mouse, pig, and human. We identify common metabolic alterations during WI and those affected by CI, thereby elucidating mechanisms underlying the benefits of CI, and how WI causes damage. Succinate accumulation is a major feature within ischaemic hearts across species, and CI slows succinate generation, thereby reducing tissue damage upon reperfusion caused by the production of mitochondrial reactive oxygen species (ROS)3,4. Importantly, the inevitable periods of WI during organ procurement lead to the accumulation of damaging levels of succinate during transplantation, despite cooling organs as rapidly as possible. This damage is ameliorated by metabolic inhibitors that prevent succinate accumulation and oxidation. Our findings suggest how WI and CI contribute to transplant outcome and indicate new therapies for improving the quality of transplanted organs.Work in the M.P.M. laboratory was supported by the Medical Research Council UK (MC_U105663142) and by a Wellcome Trust Investigator award (110159/Z/15/Z) to M.P.M. Work in the C.F. laboratory was supported by the Medical Research Council (MRC_MC_UU_12022/6). Work in the K.S.P. laboratory was supported by the Medical Research Council UK. Work in the RCH lab laboratory was supported by a Wellcome Trust Investigator award (110158/Z/15/Z) and a PhD studentship for .L.P from the University of Glasgow. A.V.G. was supported by a PhD studentship funded by the National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Organ Donation and Transplantation at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT)

    Serum estrogen levels and prostate cancer risk in the prostate cancer prevention trial: a nested case–control study

    Get PDF
    OBJECTIVE: Finasteride reduces prostate cancer risk by blocking the conversion of testosterone to dihydrotestosterone. However, whether finasteride affects estrogens levels or change in estrogens affects prostate cancer risk is unknown. METHODS: These questions were investigated in a case-control study nested within the prostate cancer prevention trial (PCPT) with 1,798 biopsy-proven prostate cancer cases and 1,798 matched controls. RESULTS: Among men on placebo, no relationship of serum estrogens with risk of prostate cancer was found. Among those on finasteride, those in the highest quartile of baseline estrogen levels had a moderately increased risk of Gleason score < 7 prostate cancer (for estrone, odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.06-2.15; for estradiol, OR = 1.50, 95% CI = 1.03-2.18). Finasteride treatment increased serum estrogen concentrations; however, these changes were not associated with prostate cancer risk. CONCLUSION: Our findings confirm those from previous studies that there are no associations of serum estrogen with prostate cancer risk in untreated men. In addition, finasteride results in a modest increase in serum estrogen levels, which are not related to prostate cancer risk. Whether finasteride is less effective in men with high serum estrogens, or finasteride interacts with estrogen to increase cancer risk, is uncertain and warrants further investigation

    Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium

    Get PDF
    Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 × 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 × 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 × 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology

    Abstract LB-357: HIF-dependent over-expression of CUB domain-containing protein 1 stimulates migration in clear cell renal cell carcinoma

    No full text
    Abstract Kidney cancer is the sixth leading cause of cancer death in the USA, and the primary tumor is frequently accompanied by metastasis to lungs, liver, brain and bones. Importantly a large number of kidney cancer cases are characterized by loss of von Hippel-Lindau (VHL) gene, which leads to stabilization of hypoxia-inducible factors (HIFs), which contribute to tumor progression and metastasis by multiple mechanisms. CUB-domain-containing protein 1 (CDCP1) was shown to be expressed on the cell surface of metastatic cell lines and to increase the number of nodules formed by lung adenocarcinoma cells and melanoma in lungs in tail vein injection experiments, enhance peritoneal dissemination of scirrhous adenocarcinoma, and to induce metastasis in the chicken embryo metastatic model. In the present study we investigated the role of CDCP1 protein in clear cell renal cell carcinoma (CC-RCC) and found it to be upregulated in this disease entity by a mechanism of VHL loss through HIFs. Interestingly, we found CDCP1 protein expressed not only on the membrane of kidney cancer cell lines, but also to be secreted into the media as a full length isoform. Importantly, in the knockdown experiments we found CDCP1 to promote CC-RCC cell migration in vitro, the process known to be the key during metastasis. Accordingly CDCP1 participates in the signal transduction pathway leading to PKCδ phosphorylation in CC-RCC, stimulating migration. The role of PKCδ in CDCP1-dependent migration was verified by the PKCδ knockdown experiments, which phenocopy the effect of CDCP1 knockdown; as well as migration rescue experiments, where the impairment of migration caused by CDCP1 downregulation was rescued by the overexpression of constitutively active mutant of PKCδ. Furthermore, we showed a correlation of CDCP1 cell surface expression in primary tumor with poor patient outcome. Finally, we found that suramin, a drug, which showed the clinical benefit for CC-RCC patients at premetastatic stages, causes the downregulation of CDCP1 at the protein level. Thus, the further investigation of the role of CDCP1 protein in kidney cancer metastasis is important to validate CDCP1 as a therapeutic target. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr LB-357. doi:10.1158/1538-7445.AM2011-LB-35
    corecore