2,748 research outputs found

    Pathoecology of Chiribaya Parasitism

    Get PDF
    The excavations of Chiribaya culture sites in the Osmore drainage of southern Peru focused on the recovery of information about prehistoric disease, including parasitism. The archaeologists excavated human, dog, guinea pig, and llama mummies. These mummies were analyzed for internal and external parasites. The results of the analysis and reconstruction of prehistoric life from the excavations allows us to interpret the pathoecology of the Chiribaya culture

    Transgressive learning communities: Transformative spaces for underprivileged, underserved, and historically underrepresented graduate students at their institutions

    Get PDF
    In this article, we propose a new vision of educational development that reimagines how graduate instructors are socialized and professionalized in academic settings. We describe a transgressive learning community that empowers graduate instructors with tools to reveal, mitigate, and disrupt oppressive structures in higher education. Our learning community is founded on critical race and feminist conceptualizations of pedagogical inquiry in its design, implementation, and assessment to serve underprivileged, underserved, and historically underrepresented graduate students. We argue that the intersections of marginalized and graduate student identities create distinct experiences of discrimination, marginalization, tokenism, isolation, and impostor syndrome due to a lack of sustained teaching mentorship within the academy. The transgressive learning community model that we propose in this article functions to create spaces of transgressive and transformational pedagogical engagement for graduate students who exist at the intersections of these identities

    Inguinal plasty and appendectomy as treatment for Amyand's hernia: case report and literature review

    Get PDF
    Amyand's hernia is described as the presence of the caecal appendix within the hernial sac of an incarcerated inguinal hernia. It was reported as an incidental finding in 1% of cases and with evidence of appendicitis in 0.1% of cases. The approach involves performing appendectomy and inguinal repair in the same surgical time, depending on the clinical scenario and the surgeon's decisions. We presented the case of a 76-year-old male patient with a diagnosis of Amyand's right inguinal hernia diagnosed during trans-operative right inguinal plasty

    Multi-ancestry genome-wide association study of asthma exacerbations

    Get PDF
    Asthma exacerbations; Single-nucleotide polymorphismExacerbaciones del asma; Polimorfismo de un solo nucleótidoExacerbacions de l'asma; Polimorfisme d'un sol nucleòtidBackground Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. Methods A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10−5) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. Results One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele) = 0.82, p = 9.05 × 10−6 and replication: ORT allele = 0.89, p = 5.35 × 10−3) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele = 0.85, p = 3.10 × 10−5 and replication: ORC allele = 0.89, p = 1.30 × 10−2). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. Conclusions This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense.This work was funded by the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033, and the European Regional Development Fund “ERDF A way of making Europe” by the European Union (SAF2017-83417R), by MCIN/AEI/10.13039/501100011033 (PID2020-116274RB-I00) and by the Allergopharma-EAACI award 2021. This study was also supported by the SysPharmPedia grant from the ERACoSysMed 1st Joint Transnational Call from the European Union under the Horizon 2020. GALA II and SAGE studies were supported by the Sandler Family Foundation, the American Asthma Foundation, the RWJF Amos Medical Faculty Development Program, Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II, the National Heart, Lung, and Blood Institute of the National Institutes of Health (R01HL117004, R01HL128439, R01HL135156, X01HL134589, R01HL141992, and R01HL141845), National Institute of Health and Environmental Health Sciences (R01ES015794 and R21ES24844); the National Institute on Minority Health and Health Disparities (NIMHD) (P60MD006902, R01MD010443, and R56MD013312); the National Institute of General Medical Sciences (NIGMS) (RL5GM118984); the Tobacco-Related Disease Research Program (24RT-0025 and 27IR-0030); and the National Human Genome Research Institute (NHGRI) (U01HG009080) to EGB. The PACMAN study was funded by a strategic alliance between GlaxoSmithKline and Utrecht Institute for Pharmaceutical Sciences. The Slovenia study was financially supported by the Slovenian Research Agency (research core funding No. P3-0067) and from SysPharmPediA grant, co-financed by the Ministry of Education, Science and Sport Slovenia (MIZS) (contract number C3330-16-500106). The SHARE Bioresource (GoSHARE) and SHARE have ongoing funding from NHS Research Scotland and were established by funding from The Wellcome Trust Biomedical Resource [Grant No. 099177/Z/12/Z]. Genotyping of samples from BREATHE, PAGES, and GoSHARE was funded by AC15/00015 and conducted at the Genotyping National Centre (CeGEN) CeGen-PRB3-ISCIII; supported by ISCIII and European Regional Development Fund (ERDF) (PT17/0019). ALSPAC was supported by the UK Medical Research Council and Wellcome (102215/2/13/2) and the University of Bristol. The Swedish Heart-Lung Foundation, the Swedish Research Council, and Region Stockholm (ALF project and database maintenance) funded the BAMSE study. The PASS study was funded by the NHS Chair of Pharmacogenetics via the UK Department of Health. U-BIOPRED was funded by the Innovative Medicines Initiative (IMI) Joint Undertaking, under grant agreement no. 115010, resources for which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and kind contributions from companies in the European Federation of Pharmaceutical Industries and Associations (EFPIA). Genotyping of samples from GEMAS and MEGA studies was funded by the Spanish Ministry of Science and Innovation (SAF2017-87417R) at the Spanish National Cancer Research Centre, in the Human Genotyping lab, a member of CeGen, PRB3, and was supported by grant PT17/0019, of the PE I+D+i 2013-2016, funded by ISCIII and ERDF. The genotyping of GEMAS was also partially funded by Fundación Canaria Instituto de Investigación Sanitaria de Canarias (PIFIISC19/17). The Rotterdam Study was funded by Erasmus Medical Center and Erasmus University Rotterdam; Netherlands Organization for the Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. ALLIANCE Cohort was funded by grants from the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) as part of the German Centre for Lung Research (DZL) funding. The Hartford-Puerto Rico study was funded by the U.S. National Institutes of Health (grant HL07966 to JCC). MP-Y was funded by the Ramón y Cajal Program (RYC-2015-17205) by MCIN/AEI/10.13039/501100011033 and by the European Social Fund “ESF Investing in your future”. MP-Y and JV were supported by CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Spain (CB/06/06/1088). EH-L was supported by a fellowship awarded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future” (PRE2018-083837). JP-G was supported by a fellowship awarded by Spanish Ministry of Universities (FPU19/02175). AE-O reports funding from the Spanish Ministry of Science, Innovation, and Universities (MICIU) and Universidad de La Laguna (ULL). NH-P was supported by a Medium-Term Research Fellowship by the European Academy of Allergy and Clinical Immunology (EAACI) and a Long-Term Research Fellowship by the European Respiratory Society (ERS) (LTRF202101-00861). UP and MG were supported by the Ministry of Education, Science and Sport of the Republic of Slovenia, grant PERMEABLE (contract number C3330-19-252012). SCSGES results were contributed by authors FTC and YYS. FTC has received research support from the Singapore Ministry of Education Academic Research Fund, Singapore Immunology Network (SIgN), National Medical Research Council (NMRC) (Singapore), Biomedical Research Council (BMRC) (Singapore), and the Agency for Science Technology and Research (A*STAR) (Singapore); Grant Numbers: N-154-000-038-001, R-154-000-191-112, R-154-000-404-112, R-154-000-553-112, R-154-000-565-112, R-154-000-630-112, R-154-000-A08-592, R-154-000-A27-597, R-154-000-A91-592, R-154-000-A95-592, R-154-000-B99-114, BMRC/01/1/21/18/077, BMRC/04/1/21/19/315, SIgN-06-006, SIgN-08-020, NMRC/1150/2008, and H17/01/a0/008. F.T.C. has received consulting fees from Sime Darby Technology Centre; First Resources Ltd; Genting Plantation, and Olam International, outside the submitted work. YYS has received research support from the NUS Resilience & Growth Postdoctoral Fellowships with grant number: R-141-000-036-281. QY conducted the analysis from Hartford-Puerto Rico and United Kingdom Biobank studies. QY was funded by the U.S. National Institutes of Health (HL138098)

    In vitro anti-canine distemper virus activity of fucoidan extracted from the brown alga Cladosiphon okamuranus

    Get PDF
    Canine distemper virus (CDV) is a morbillivirus related to measles virus that infects dogs and other carnivores. CDV has a significant global impact on animal health; however, there is no current antiviral treatment for CDV infection. In recent years, it has been demonstrated that sulfated polysaccharides exhibit antiviral properties both in vivo and in vitro, despite their low cytotoxicity to host cells. Fucoidan is a sulfated polysaccharide found in the cell wall matrix of brown algae. In this study, we evaluated in vitro anti-CDV activity of fucoidan, which was derived from Cladosiphon okamuranus. Fucoidan actively inhibited CDV replication in Vero cells at a 50% inhibitory concentration (IC50) of 0.1 lg/ml. The derived selectivity index (SI50) was[20,000. This polysaccharide likely inhibits viral infection by interference in the early steps and by inhibiting CDV-mediated cell fusion. Fucoidan may be useful in development of pharmacological strategies to treat and control CDV infection

    Effects of Spirotetramat on Aonidiella aurantii (Homoptera: Diaspididae) and Its Parasitoid, Aphytis melinus (Hymenoptera: Aphelinidae)

    Get PDF
    Laboratory and field studies were conducted to measure the effects of spirotetramat on life stages of California red scale, Aonidiella aurantii (Maskell), and a primary parasitoid, Aphytis melinus DeBach. Organophosphate-resistant and -susceptible populations responded similarly to spirotetramat, suggesting there is no cross-resistance between these insecticide classes. First and second instar male and female A. aurantii were 10- and 32-fold more susceptible to spirotetramat (LC50 = 0.1-0.2 ppm) compared with early third (LC50 = 1.5 ppm) and late third instar females (LC50 = 5.3 ppm). The LC99 value indicated that late stage third instar females would not be fully controlled by a field rate of spirotetramat; however, spirotetramat would reduce their fecundity by 89%. Field applications of spirotetramat in two water volumes and using two adjuvants (oil and a nonionic spray adjuvant) showed similar reduction in A. aurantii numbers, even though the higher water volume demonstrated more complete coverage. These data suggest that this foliarly applied systemic insecticide can be applied in as little as 2,340 liters/ha of water volume, minimizing application costs, and that the two adjuvants acted similarly. The endoparasitoid, A. melinus, was unaffected by the field rate of spirotetramat when it was applied to the host when the parasitoid was in the egg or larval stage. Adult A. melinus showed 2 wk of moderate reductions in survival when exposed to leaves with field-weathered residues. Spirotetramat is an integrated pest management compatible insecticide, effective in reducing A. aurantii stages and allowing survival of its primary parasitoid A. melinus
    corecore