5 research outputs found

    Selection of Mimotopes of the Cell Surface Adhesion Molecule Mel-CAM from a Random pVIII-28aa Phage Peptide Library

    Get PDF
    The cell surface adhesion molecule Mel-CAM is highly expressed in advanced primary and metastatic melanoma. Mel-CAM was first described as an integral membrane glycoprotein of malignant melanoma cells. The murine monoclonal antibody MAd18-5D7 recognizes an epitope of the extracellular domain of Mel-CAM and is able to enhance Mel-CAM mediated adhesion of melanoma cells in aggregation assays. For the characterization of peptides that antigenically mimic surface-exposed areas of Mel-CAM we screened a newly constructed random pVIII-28aa bacteriophage peptide library against MAd18-5D7. After three panning rounds a population of phages binding to MAd18-5D7 was enriched. Peptides expressed on the surface of these phages were then tested for their specificity for the antibody's antigen binding site. DNA sequences coding for two specific peptide ligands were determined. One of the deduced amino acid sequences showed similarity to a portion of the sequence of the third immunoglobulin-like extracellular domain of Mel-CAM. Both peptides blocked the interaction of MAd18-5D7 with Mel-CAM present in a MelJuSo melanoma cell line lysate. Phage displayed as well as synthetic peptides inhibited in a dose-dependent manner the binding of MAd18-5D7 to recombinant Mel-CAM in enzyme-linked immunosorbent assay experiments. No such inhibition was observed using a panel of other anti-Mel-CAM antibodies. Our results clearly indicate that these 28mer peptides are structural equivalents of the MAd18-5D7 epitope of Mel-CAM and that they will be useful tools for further in vitro and in vivo studies of Mel-CAM mediated cell–cell interaction

    Thalidomide Enhances the Anti-Tumor Activity of Standard Chemotherapy in a Human Melanoma Xenotransplatation Model

    Get PDF
    It has been demonstrated that thalidomide's anti-angiogenic properties result in clear anti-tumor activity in a number of human malignancies. We studied thalidomide in a human melanoma severe combined immunodeficiency mouse xenotransplantation model. Thalidomide as a single agent showed a significant tumor reduction of 46% compared with the control group. Thalidomide combined with dacarbazine treatment markedly enhanced the anti-tumor effect of chemotherapy and showed a significant tumor reduction relative to the dacarbazine-only group (61%) and even more tumor reduction (74%) compared with the control group. We also measured clearly reduced levels of tumor necrosis factor-α in the thalidomide-treated group. A significantly lower microvessel density was encountered in the thalidomide treatment groups (thalidomide alone or combined with DTIC), underscoring the anti-angiogenic effect of thalidomide as a single agent as well as in combination with chemotherapy in this model. In line with these results, we observed a nearly 3-fold increase of apoptosis for the combination of thalidomide and DTIC compared with the rate of apoptotic cells in DTIC-only-treated melanoma xenotransplants. These data underline the rationale for combining dacarbazine—a cytotoxic agent—and thalidomide—an anti-angiogenic cytostatic agent—as a promising strategy for the treatment of melanoma
    corecore