8 research outputs found
Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information
Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/
Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies
Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)
Recommended from our members
Identification of candidate Parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets
Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD.
Objective To investigate what genes and genomic processes underlie the risk of sporadic PD.
Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks.
Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role.
Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance.
Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies
Ethyl alcohol threshold test: a fast, reliable and affordable olfactory Assessment tool for COVID-19 patients
International audienceObjective: COVID-19 patients may present mild symptoms. The identification of paucisymptomatic patients is paramount in order to interrupt the transmission chain of the virus. Olfactory loss could be one of those early symptoms which might help in the diagnosis of COVID-19 patients. In this study, we aim to develop and validate a fast, inexpensive, reliable and easy-to-perform olfactory test for the screening of suspected COVID-19 patients. Study design: Phase I was a case–control study and Phase II a transversal descriptive study. Subjects and methods: Olfaction was assessed with the ethyl alcohol threshold test and symptoms with visual analogue scales. The study was designed in two phases: In Phase I, we compared confirmed COVID-19 patients and healthy controls. In Phase II, patients with suspected COVID-19 infection referred for testing were studied. Results: 275 participants were included in Phase I, 135 in Phase II. The ROC curve showed an AUC of 0.749 in Phase I, 0.737 in Phase II. The cutoff value which offered the highest amount of correctly classified patients was ≥ 2 (10% alcohol) for all age intervals. The odds ratio was 8.19 in Phase I, 6.56 in Phase II with a 75% sensitivity. When cases report normal sense of smell (VAS < 4), it misdiagnoses 57.89% of patients detected by the alcohol threshold test. Conclusion: The olfactory loss assessed with the alcohol threshold test has shown high sensitivity and odds ratio in both patients with confirmed COVID-19 illness and participants with suspected SARS-CoV-2 infection
Identification of sixteen novel candidate genes for late onset Parkinson's disease
Altres ajuts: Italian Ministry of Health grant (RF 2019-12370224, GR2016-02362247); Italian Ministry of Economic Development (F/0009/00X26); Fondazione Umberto Veronesi.Background: Parkinson's disease (PD) is a neurodegenerative movement disorder affecting 1-5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. Methods: The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). Results: Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. Conclusions: Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment
Moving beyond neurons:the role of cell type-specific gene regulation in Parkinson’s disease heritability
Abstract
Parkinson’s disease (PD), with its characteristic loss of nigrostriatal dopaminergic neurons and deposition of α-synuclein in neurons, is often considered a neuronal disorder. However, in recent years substantial evidence has emerged to implicate glial cell types, such as astrocytes and microglia. In this study, we used stratified LD score regression and expression-weighted cell-type enrichment together with several brain-related and cell-type-specific genomic annotations to connect human genomic PD findings to specific brain cell types. We found that PD heritability attributable to common variation does not enrich in global and regional brain annotations or brain-related cell-type-specific annotations. Likewise, we found no enrichment of PD susceptibility genes in brain-related cell types. In contrast, we demonstrated a significant enrichment of PD heritability in a curated lysosomal gene set highly expressed in astrocytic, microglial, and oligodendrocyte subtypes, and in LoF-intolerant genes, which were found highly expressed in almost all tested cellular subtypes. Our results suggest that PD risk loci do not lie in specific cell types or individual brain regions, but rather in global cellular processes detectable across several cell types