34 research outputs found

    Modellistica Computazionale dell'Elettrofisiologia Cardiaca: dalla Cellula al Paziente

    Get PDF
    Heart diseases are the leading cause of death worldwide, both for men and women. However, the ionic mechanisms underlying many cardiac arrhythmias and genetic disorders are not completely understood, thus leading to a limited efficacy of the current available therapies and leaving many open questions for cardiac electrophysiologists. On the other hand, experimental data availability is still a great issue in this field: most of the experiments are performed in vitro and/or using animal models (e.g. rabbit, dog and mouse), even when the final aim is to better understand the electrical behaviour of in vivo human heart either in physiological or pathological conditions. Computational modelling constitutes a primary tool in cardiac electrophysiology: in silico simulations, based on the available experimental data, may help to understand the electrical properties of the heart and the ionic mechanisms underlying a specific phenomenon. Once validated, mathematical models can be used for making predictions and testing hypotheses, thus suggesting potential therapeutic targets. This PhD thesis aims to apply computational cardiac modelling of human single cell action potential (AP) to three clinical scenarios, in order to gain new insights into the ionic mechanisms involved in the electrophysiological changes observed in vitro and/or in vivo. The first context is blood electrolyte variations, which may occur in patients due to different pathologies and/or therapies. In particular, we focused on extracellular Ca2+ and its effect on the AP duration (APD). The second context is haemodialysis (HD) therapy: in addition to blood electrolyte variations, patients undergo a lot of other different changes during HD, e.g. heart rate, cell volume, pH, and sympatho-vagal balance. The third context is human hypertrophic cardiomyopathy (HCM), a genetic disorder characterised by an increased arrhythmic risk, and still lacking a specific pharmacological treatment.Le malattie cardiache e cardiovascolari sono ad oggi la causa principale di morte nel mondo. Tuttavia, i meccanismi ionici responsabili di aritmie o di altre malattie cardiache non sono ancora del tutto conosciuti: questo spesso porta a una minore o mancata efficacia delle terapie attualmente disponibili, e lascia numerose domande aperte per gli elettrofisiologi. Inoltre, la difficoltà di acquisizione dei dati sperimentali rimane ancora uno dei problemi più grandi in questo campo. Infatti la maggior parte dei dati vengono raccolti in vitro e/o utilizzando modelli animali come coniglio, ratto o cane, sebbene l’obiettivo ultimo sia quello di una più completa comprensione del comportamento elettrico del cuore in vivo e nell’uomo, in condizioni sia fisiologiche sia patologiche. In questo contesto, la modellistica computazionale costituisceuno strumento indispensabile: infatti, le simulazioni in silico permettono di superare, almeno in parte, i limiti sperimentali, e di investigare i meccanismi ionici alla base di specifici fenomeni a diversi livelli (singola cellula, tessuto, intero cuore). Una volta validati sui dati sperimentali, i modelli matematici possono essere dunque utilizzati per fare predizioni, testare ipotesi e valutare l’efficacia di eventuali interventi farmacologici. Lo scopo di questa tesi di dottorato è stato quello di applicare tecniche di modellistica matematica a problemi di elettrofisiologia cardiaca, in particolare utilizzando modelli di potenziale d’azione (PA) umano in tre diversi contesti: variazioni elettrolitiche nel sangue, effetti della terapia dialitica sul cuore e cardiomiopatia ipertrofica

    Computational Analysis of Extracellular Calcium Effects on an Improved Human Ventricular Action Potential Model

    Get PDF
    A decrease in extracellular calcium concentration ([Ca 2+ ] o ) prolongs the action potential (AP) Introduction The effects of extracellular concentration of ionized calcium ([Ca 2+ ] o ) on cardiac electrophysiology have been already discussed in previous works QT c prolongation is associated with an increased risk of early after-depolarization and triggered arrhythmias, and the same applies to abnormal QT c shortening: Methods The ORd model of human ventricular myocyte [9] provided the basis for simulations in this study. Since ICaL is the current mainly affected by [Ca 2+ ] o changes, its formulation has been revisited, especially its modulation of calcium-dependent (CDI) and voltage-dependent (VDI) inactivation. Ca 2+ modulation: n gate One of the features of ORd model, based on experiments by Kim et al. [11], is that CDI has been considered to function as a faster VDI, activated by high calcium concentration in the subspace region ([Ca] ss ]. Thus, both VDI and CDI mechanisms are voltagedependent and a new state variable has been introduced to modulate them: n gate. It represents the fraction of channel operating in CDI mode, and it is the only state variable, among the ones involved in ICaL kinetics, to be directly dependent on [Ca] ss . The n formulation, based on interaction between Ca 2+ and Calmodulin bound to L-type Ca 2+ -channels cinc.org Computing in Cardiology 2012; 39:873-876

    Human Purkinje in silico model enables mechanistic investigations into automaticity and pro-arrhythmic abnormalities

    Get PDF
    Cardiac Purkinje cells (PCs) are implicated in lethal arrhythmias caused by cardiac diseases, mutations, and drug action. However, the pro-arrhythmic mechanisms in PCs are not entirely understood, particularly in humans, as most investigations are conducted in animals. The aims of this study are to present a novel human PCs elec- trophysiology biophysically-detailed computational model, and to disentangle ionic mechanisms of human Purkinje-related electrophysiology, pacemaker activity and arrhythmogenicity. The new Trovato2020 model incorporates detailed Purkinje-specific ionic currents and Ca2+ handling, and was developed, calibrated and validated using human experimental data acquired at multiple frequencies, both in control conditions and fol- lowing drug application. Multiscale investigations were performed in a Purkinje cell, in fibre and using an experimentally-calibrated population of PCs to evaluate biological variability. Simulations demonstrate the human Purkinje Trovato2020 model is the first one to yield: (i) all key AP features consistent with human Purkinje recordings; (ii) Automaticity with funny current up-regulation (iii) EADs at slow pacing and with 85% hERG block; (iv) DADs following fast pacing; (v) conduction velocity of 160 cm/s in a Purkinje fibre, as reported in human. The human in silico PCs population highlights that: (1) EADs are caused by ICaL reactivation in PCs with large inward currents; (2) DADs and triggered APs occur in PCs experiencing Ca2+ accumulation, at fast pacing, caused by large L-type calcium current and small Na+/Ca2+ exchanger. The novel human Purkinje model unlocks further investigations into the role of cardiac Purkinje in ventricular arrhythmias through computer modeling and multiscale simulations

    From multiscale biophysics to digital twins of tissues and organs: future opportunities for in silico pharmacology

    Full text link
    With many advancements in in silico biology in recent years, the paramount challenge is to translate the accumulated knowledge into exciting industry partnerships and clinical applications. Achieving models that characterize the link of molecular interactions to the activity and structure of a whole organ are termed multiscale biophysics. Historically, the pharmaceutical industry has worked well with in silico models by leveraging their prediction capabilities for drug testing. However, the needed higher fidelity and higher resolution of models for efficient prediction of pharmacological phenomenon dictates that in silico approaches must account for the verifiable multiscale biophysical phenomena, as a spatial and temporal dimension variation for different processes and models. The collection of different multiscale models for different tissues and organs can compose digital twin solutions towards becoming a service for researchers, clinicians, and drug developers. Our paper has two main goals: 1) To clarify to what extent detailed single- and multiscale modeling has been accomplished thus far, we provide a review on this topic focusing on the biophysics of epithelial, cardiac, and brain tissues; 2) To discuss the present and future role of multiscale biophysics in in silico pharmacology as a digital twin solution by defining a roadmap from simple biophysical models to powerful prediction tools. Digital twins have the potential to pave the way for extensive clinical and pharmaceutical usage of multiscale models and our paper shows the basic fundamentals and opportunities towards their accurate development enabling the quantum leaps of future precise and personalized medical software.Comment: 30 pages, 10 figures, 1 tabl

    Advancing the 3Rs: innovation, implementation, ethics and society

    Full text link
    The 3Rs principle of replacing, reducing and refining the use of animals in science has been gaining widespread support in the international research community and appears in transnational legislation such as the European Directive 2010/63/EU, a number of national legislative frameworks like in Switzerland and the UK, and other rules and guidance in place in countries around the world. At the same time, progress in technical and biomedical research, along with the changing status of animals in many societies, challenges the view of the 3Rs principle as a sufficient and effective approach to the moral challenges set by animal use in research. Given this growing awareness of our moral responsibilities to animals, the aim of this paper is to address the question: Can the 3Rs, as a policy instrument for science and research, still guide the morally acceptable use of animals for scientific purposes, and if so, how? The fact that the increased availability of alternatives to animal models has not correlated inversely with a decrease in the number of animals used in research has led to public and political calls for more radical action. However, a focus on the simple measure of total animal numbers distracts from the need for a more nuanced understanding of how the 3Rs principle can have a genuine influence as a guiding instrument in research and testing. Hence, we focus on three core dimensions of the 3Rs in contemporary research: (1) What scientific innovations are needed to advance the goals of the 3Rs? (2) What can be done to facilitate the implementation of existing and new 3R methods? (3) Do the 3Rs still offer an adequate ethical framework given the increasing social awareness of animal needs and human moral responsibilities? By answering these questions, we will identify core perspectives in the debate over the advancement of the 3Rs

    Minipuberty in Male Full-term Neonates Appropriate and Small for Gestational Age and in Preterm Babies: Data from a Single Centre

    Get PDF
    INTRODUCTION: The postnatal activation of the hypothalamic-pituitary-gonadal (HPG) axis is usually known as 'minipuberty'. There are still open questions about its biological function and significance depending on sex, gestational age (GA) and birth weight (BW) with few available longitudinal data. METHODS: A single-centre, longitudinal study to quantify urinary follicle stimulating hormone (uFSH), luteinizing hormone (uLH) and testosterone (uTs) in male neonates. Neonates were enrolled and stratified into three subgroups: full-term boys appropriate for GA (FT AGA); FT boys with BW ≤3rd centile [FT small for gestational age (SGA)]; and preterm (PT) boys ≤33 weeks of GA. Urinary hormones were correlated to simultaneous auxological parameters, linear growth and external genitalia at scheduled time-points. RESULTS: Forty-six boys were recruited, with subgroup sizes FT AGA n=23, FT SGA n=11 and PT n=12. PT boys display a pulsatile pattern of urinary gonadotropins (uGns) with higher levels of uLH and a gradual increase of uTs. Testicular descent started from 29-32 weeks with the peak of uTs. During the first 12-months post-term age (PTA), FT AGA boys displayed a better linear growth (p<0.05). PT showed higher uGns levels until 3-months PTA. PT babies had higher uLH levels than FT AGA, with a peak at 7 and 30 days, during the first 90 days of life (p<0.001) and higher uTs levels. Correlation analysis between penile growth of all neonates and uTs was significant (p=0.04) but not within subgroups. DISCUSSION AND CONCLUSION: This study investigated postnatal HPG axis activation in term and PT infants. Minipuberty may involve an early window of opportunity to evaluate the functionality of the HPG axis. Further studies with a long-term follow-up are needed with a special focus on possible consequences of GA and BW

    Human-based approaches to pharmacology and cardiology: an interdisciplinary and intersectorial workshop.

    Get PDF
    Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting

    General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA In Silico Strategy

    Get PDF
    This white paper presents principles for validating proarrhythmia risk prediction models for regulatory use as discussed at the In Silico Breakout Session of a Cardiac Safety Research Consortium/Health and Environmental Sciences Institute/US Food and Drug Administration–sponsored Think Tank Meeting on May 22, 2018. The meeting was convened to evaluate the progress in the development of a new cardiac safety paradigm, the Comprehensive in Vitro Proarrhythmia Assay (CiPA). The opinions regarding these principles reflect the collective views of those who participated in the discussion of this topic both at and after the breakout session. Although primarily discussed in the context of in silico models, these principles describe the interface between experimental input and model‐based interpretation and are intended to be general enough to be applied to other types of nonclinical models for proarrhythmia assessment. This document was developed with the intention of providing a foundation for more consistency and harmonization in developing and validating different models for proarrhythmia risk prediction using the example of the CiPA paradigm
    corecore