4 research outputs found

    Synthesis, Characterisation and Catalytic Evaluation of Castor Oil-Templated Mesoporous Sulfated Solid Acid Catalysts for Esterification Reaction

    Get PDF
    In bio-refinery and other catalytic reactions, heterogeneous catalysts confer advantage over homogenous catalysts due to minimized recovery and separation costs. However, templating surfactant and solid support for the synthesis of heterogeneous catalysts ought to consider their cheap sources and environmentally friendliness for their sustainable use. Thus, with the vision to make the process significantly benign, in the present work, solid acids were synthesised from renewable sources (castor oil as surfactant and rice husk as the source of silica). The synthesised castor oil-templated mesoporous sulfonic acid modified catalysts (SO3H-MTS and SO3H-MT-RHS) were characterised and evaluated for catalytic esterification of acetic acid (C2), hexanoic acid (C6), lauric acid (C12), palmitic acid (C16), and ricinoleic acid (C18) with butanol at 110 °C. Physicochemical properties of the synthesised materials were characterised by nitrogen porosimetry, X-ray powder diffraction, thermogravimetry, X-ray Photoelectron Spectroscopy (XPS), and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The porosimetric analysis of the synthesised materials revealed a type IV adsorption-desorption isotherm reminiscent of the mesoporous structures. The surface area of the synthesised materials decreased upon functionalisation by sulfonic group. The DRIFTS and XPS confirmed the attachment of sulfonic functional group on the synthesised materials. Evaluation of the catalytic performance of the synthesized materials was determined through analysis of carboxylic acid conversions using gas chromatographic technique. SO3H-MTS gave higher acid conversions compared to SO3H-MT-RHS. The sulfated solid acid catalysts showed good catalytic activity on the esterification with conversion ranging from 96-37% for C2-C18 with butanol at 110 °C within 6 h. Such castor oil-templated mesoporous sulphated solid acid catalysts can therefore be applied in biodiesel production upon process optimisation

    Synthesis of amine functionalized mesoporous silicas templated by castor oil for transesterification

    Get PDF
    Mesoporous silicas were synthesized via a surfactant-templated sol-gel route using castor oil as the templating agent under acidic medium. The resulting silicas were subsequently amine functionalized with 3-aminopropyltriethoxysilane (NH2-MTS), [3-(2-aminoethylamino)-propyl]trimethoxysilane (NN-MTS), and [3-(diethylamino)propyl]trimethoxysilane(DN-MTS) to introduce surface basicity. Surface physicochemical properties were characterized by field emission gun scanning electron microscopy (FEGSEM), nitrogen porosimetry, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and diffuse reflectance infrared fourier transform spectroscopy (DRIFTS). As-synthesised materials exhibit type IV adsorption-desorption isotherms characteristic of mesoporous structures. Clusters of spherical shaped materials were observed by FEGSEM, suggesting growth of silica occurs within colloidal dispersions. High-resolution N 1s XP spectra and DRIFT spectra confirmed the presence of amine groups in the organo-amine functionalised mesoporous silicas. The amine functionalised mesoporous silicas were active for the transesterification of tributyrin with methanol, with conversion found to increase from NH2-MTS< NN-MTS< DN-MTS

    Valorization of rice husk silica waste:Organo-amine functionalized castor oil templated mesoporous silicas for biofuels synthesis

    Get PDF
    Rice husk is a rich source of waste silica which has potential for application in the preparation of porous materials for use as catalyst supports or sorbents. Here we report on the synthesis of rice husk silica (RHS) and mesoporous templated rice husk silica (MT-RHS) using sodium silicate, obtained from rice husk ash, and castor oil as a pore directing agent. The resulting silicas were functionalized with 3-aminopropyltriethoxysilane (APTS) or 3-diethylaminopropyltrimethoxysilane (DEPA), and their catalytic activity evaluated in the transesterification of model C4–C12 triglycerides (TAG) to their corresponding fatty acid methyl esters, of relevance to biodiesel synthesis. Castor oil templating enhances the surface area of rice husk silica, and introduces uniform 4 nm mesopores, albeit as a disordered pore network. Post-synthetic grafting of silica by APTS or DEPA resulted in base site loadings of 0.5 and 0.8 mmolg−1 respectively on RHS and MT-RHS. Turnover frequencies of amine-functionalized MT-RHS were 45–65% greater than those of their amine-functionalized RHS counterparts for tributyrin transesterification. Switching from a primary (APTS) to tertiary (DEPA) amine increased activity three-fold, delivering 80% tributyrin conversion to methyl butyrate in 6 h. DEPA-MT-RHS was effective for the transesterification of C8 and C12 triglycerides, with methyl caproate and methyl laurate selectivities of 93% and 71% respectively in 24 h

    Biodiesel production by esterification of ricinoleic acid over a series of synthesized sulfated zirconia catalysts

    Get PDF
    A series of sulfated zirconia (SZ) were synthesized and evaluated for catalytic esterification of ricinoleic acid obtained from the castor oil with butanol at 110 °C. The effect of alcohols’ chain length was studied using butanol (C4), propanol (C3), ethanol (C2) and methanol (C1) at 65 °C, and reflux of corresponding alcohol boiling points. The synthesized catalysts were characterized using nitrogen porosimetry, X-ray powder diffraction, thermogravimetric analysis and Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Analysis of ricinoleic conversion was performed using gas chromatography. Sulfuric acid loading improved the surface area of zirconia at a lower dose. The surface areas of the catalysts increased as the concentrations of sulfuric acid solution were increased from 0.025 to 0.10 M, after which the decline was observed. SZ obtained at 0.05 M H2SO4 (0.05SZ) gave the optimal catalytic activity compared to the other series of SZ used. The ricinoleic acid conversion decreased with increase of alcohol alkyl chain from C1-C4 at 65 °C, but increased under the reflux temperature of the corresponding alcohols, with the maximum conversion being 47% at 118 °C for the reaction involving butanol. Overall, the synthesized SZ catalysts are deployable in biodiesel production from castor oil upon optimizing other conditions. Keywords: Ricinoleic acid; Sulfated zirconia; Biodiesel productio
    corecore