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ABSTRACT 

Mesoporous silicas were synthesized via a surfactant-templated sol-gel route using castor oil 

as the templating agent under acidic medium. The resulting silicas were subsequently amine 

functionalized with 3-aminopropyltriethoxysilane (NH2-MTS), [3-(2-aminoethylamino)-

propyl]trimethoxysilane (NN-MTS), and [3-(diethylamino)propyl]trimethoxysilane(DN-MTS) 

to introduce surface basicity. Surface physicochemical properties were characterized by field 

emission gun scanning electron microscopy (FEGSEM), nitrogen porosimetry, X-ray 

photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), X-ray diffraction 

(XRD), and diffuse reflectance infrared fourier transform spectroscopy (DRIFTS). As-

synthesised materials exhibit type IV adsorption-desorption isotherms characteristic of 

mesoporous structures. Clusters of spherical shaped materials were observed by FEGSEM, 

suggesting growth of silica occurs within colloidal dispersions. High-resolution N 1s XP 

spectra and DRIFT spectra confirmed the presence of amine groups in the organo-amine 

functionalised mesoporous silicas. The amine functionalised mesoporous silicas were active 

for the transesterification of tributyrin with methanol, with conversion found to increase from 

NH2-MTS< NN-MTS< DN-MTS. 
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INTRODUCTION 

Castor oil is a non-edible naturally occurring triglyceride composed of glycerol 

and free fatty acid chains with approximately ninety percent of the fatty acid chains 

being ricinoleic acid[1,2]. Castor oil has unique properties owing to the presence of a 

hydroxyl group in addition to carboxylic and olefinic groups in ricinoleic acid, which 

makes the oil a good candidate for transformation by different chemical reactions such as 

hydrogenation, epoxidation, saponification, esterification, pyrolysis, sulphonation and 

polymerizations [3]. Thus, various chemicals such as sebacic acid, undecylenic acid, 2-

octanol can be obtained from the castor oil[4]. Castor oil and ricinoleic acid have also 

been reported as a capping agent for nanoparticles synthesis[5,6] and have been used for 

biodiesel production via esterification and transesterification, respectively[7,8]. 

Synthesis of mesoporous silica materials have attracted attention due to their 

properties which support a variety of applications[9–11]. Mesoporous solid supports are 

typically synthesized via non-renewable petroleum-derived polyol or alkylamine 

surfactant templates such as pluronic P123, cetyltrimethylammonium bromide and  

dodecylamine[12–14]. However, these artificial surfactants are expensive, harmful to the 

environment, toxic and not easily available. The search for renewable surfactants that are 

naturally available and environmentally friendly in synthesizing mesoporous materials is 

necessary. Thus, the use of natural and renewable surfactant including castor oil for the 

synthesis of mesoporous materials are gaining importance[15–18]. Castor oil is suitable 

to be used as pore directing agent during the synthesis of mesoporous materials due to 

the carboxylic acid and hydroxyl groups of the ricinoleic acid. This makes the oil an 

amphiphilic molecule as it contains polar head and nonpolar tail[18]. Consequently, in 

the present work, the occurrence of hydrophilic head and hydrophobic tail in castor oil 

was envisaged to facilitate micelles formation when mixed with water/ethanol/HCl, 

hence making the castor oil the structural directing agent. Functionalization of the 

mesoporous material can be performed via a one pot-synthesis[11,14,18] or post-

synthesis approach[19,20]. Thus, in this report, castor oil which is biodegradable and 

renewable material was used as a natural surfactant for the synthesis of the mesoporous 

materials. The synthesized mesoporous materials were functionalized using primary, 

secondary and tertiary amine to introduce surface basicity, with the impact on catalyst 

activity for the transesterification of C4 triglyceride, a model reactant for evaluating 

catalysts for biodiesel synthesis explored. 

EXPERIMENTAL 

Materials and Chemicals 

Castor seeds were collected from Iringa and Dodoma regions of Tanzania. 

Tetraethyl-orthosilicate (TEOS), hydrochloric acid, ethanol, n-hexane, potassium 

hydroxide, potassium bromide, 3-aminopropyltriethoxysilane (RNH2), 2,3-

aminoethylamino)propyltrimethoxysilane (NN), 3-diethylaminopropyltrimethoxysilane 

(DN), dry toluene, methanol, tributyrin (TB), methyl butyrate (MB),dihexylether (DHE) 

were bought from Sigma Aldrich and used without further purification. 
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Castor oil extraction 

Castor oil was obtained by Soxhlet extraction using 250 mL n-hexane as the 

extracting solvent. 10 g of crushed castor seeds were placed in a thimble in the centre of 

the extractor and n-hexane heated in a round bottom flask at 60 °C, and the n-hexane 

vapor condensed and passed through the thimble. The extract was collected in the round 

bottom flask for6 h, with 2 mL of castor oil obtained per 10 g of crushed castor seeds. 

Synthesis of mesoporous templated silica (MTS) using castor oil  

2.5 g castor oil was dissolved in a stirred mixture of 53 mL distilled water, 47 

mL ethanol, and 10 mL 2M HCl. The mixture was stirred at 35 °C for 2 h prior to the 

addition of 23 mL TEOS and then stirred for a further 24 h, prior to aging at 80 °C for an 

additional 24 h in a sealed vessel. The organic template was subsequently removed by 

Soxhlet extraction using 200 ml of ethanol as the extracting solvent during reflux at 70 

°C for 10 h. The parent mesoporous templated silica (MTS) was obtained by filtration 

and ambient drying. 

Functionalization of MTS 

2 g MTS was oven dried at 100°C for 1 h, and then dispersed in dry toluene 

under stirring for 1 h, followed by addition of RNH2, NN, or DN as represented in Figure 

1.Each of the resulting mixtures was subsequently refluxed at 130 °C for 24.In all cases, 

solid powders were obtained by filtration, methanol washing and dried overnight at 100 

°C. The resulting functionalized mesoporous materials were termed NH2-MTS, NN-

MTS, and DN-MTS. 

 

 

Figure 1. Reaction scheme showing amine grafted to the MTS 

Transesterification reactions 

Transesterification reactions were performed at 60 °C using a Radleys reactor 

station employing 10 mmol of Tributyrin (TB) (C4), 1 mmol of dihexylether, DHE 

(internal standard), 300 mmol of methanol and 50 mg of catalyst in a two-necked round 

DN-MTS

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/a

dv
.2

01
8.

34
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 R

M
IT

 U
ni

ve
rs

ity
 L

ib
ra

ry
, o

n 
13

 A
pr

 2
01

8 
at

 0
0:

16
:0

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1557/adv.2018.347
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


bottomed flask. Reactions were run for 24 h with samples collected periodically and 

filtered and diluted in dichloromethane prior to analysis by gas chromatography. C4 

conversion was monitored using a Varian 450-GC equipped with a Phenomenex ZB-5HT 

Inferno 15 m × 0.32 mm × 0.10 μm. All catalytic profiles are an average of 3 injections 

per sample. 

MTS characterization  

Powder X-ray diffraction patterns were measured on a Bruker AXS D8 

Advance X-Ray diffractometer, equipped with nickel filtered Cu Kα radiation (λ = 1.5406 

Å). Nitrogen physisorption was performed using a Quantachrome Nova 4200 

porosimeter. Pore size distributions were determined using the Barrett-Joyner-Halend 

(BJH) method, applied to the desorption branch of the isotherms, while surface areas 

were determined by the Brunauer- Emmett-Teller (BET) method for p/p0 between 0.05-

0.3[21, 22]. Samples were degassed at 120 °C for 3 h prior to analysis. Morphology was 

determined using a Zeiss Ultra Plus Field Emission Gun Scanning Electron Microscopy 

(FEG SEM) was used for the surface morphology analysis at 10 kV. Samples were 

carbon coated using Quorum coater (Model Q150TE) prior to SEM characterization. 

DRIFTS measurements were conducted in air using a Thermo Nicolet 6700 FTIR 

spectrometer on samples diluted 10 wt% in dry KBr were used to perform a background 

subtraction and obtain the adsorbate bands. Surface compositions were determined by 

XPS using a Kratos Axis HSi spectrometer equipped with a charge neutralizer and 

monochromated Al Kα source (1486.7 eV) at normal emission; binding energies were 

referenced to adventitious carbon at 284.8 eV. TGA was performed using PerkinElmer 

Pyris 6 thermal analyzer under flowing N2 (30ml/min) between 40-800 °C (ramp rate 10 

°C/min). 

RESULTS AND DISCUSSION 

The textural properties of the synthesized MTS and functionalized MTS were 

studied by N2 porosimetry at 77 K. Figure 2 shows the N2 adsorption-desorption 

isotherms and BJH pore size distribution of the parent MTS and amine functionalized 

MTS. All synthesized materials exhibited type IV adsorption-desorption isotherms with a 

hysteresis loop in the partial pressure range from 0.55-0.8 which are characteristic 

features of mesoporous materials associated with capillary condensation taking place in 

mesopores[23]. The amount of adsorbed nitrogen decreased upon grafting different 

organoamine groups due to partial blockage of pores upon surface modification, resulting 

in decreased surface area, pore diameter and pore volume (Table I). In addition, this 

decrease could be partly attributed to oligomerisation of the amino-silanes to form 

oligosiloxanes which partially block pores. The surface area of the parent MTS decreased 

from 899 m
2
/g to 510,407 and 246 m

2
/g upon modification with RNH2, NN, and DN, 

respectively indicating more significant blockage as the bulkiness of the organoamines 

increased. While the porosimetry shows materials to be mesoporous, no low angle peak 

was observed by XRD, indicating that there was no long range order of the pores. 
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Figure 2. N2 isotherms and pore size distribution for MTS and amines functionalized MTS. 

 

Table I. Textural properties of non-functionalized and functionalized MTS. 

Sample BET surface 

area (m
2
/g) 

Total pore 

volume(cc/g) 

BJH Pore diameter 

(nm) 

MTS 899 1.47 6.7 

NH2MTS 510 1.32 6.1 

NN-MTS 407 0.63 5.8 

DN-MTS 246 0.84 5.4 

 

TG analysis and DTG curves of the synthesized materials are presented in 

Figure 3.Synthesized MTS, amine functionalized MTS had weight loss below 100 °C 

associated with physisorbed water, followed by large weight loss for functionalized 

materials at 300-500 °C attributable to the decomposition of aminopropyl functional 

groups. Furthermore, heating >600 °C led to additional weight loss ascribed to 

condensation of silanol group condensation. 

The surface morphology analyzed by SEM indicated clusters of spherical 

structures for all functionalized MTS as represented in Figure 4. 

 

 
Figure 3.TGA and DTG curves of parent MTS and amine functionalized MTS. 
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Figure 4. SEM micrograph of NH2-MTS. 

 

Surface analysis of the chemical composition on the silica grafted groups was 

analyzed by XPS which revealed all samples exhibited an N 1s peak centred~398.8 eV 

characteristic of amine groups evidencing the successful attachment of N containing 

groups. The resulting surface compositions are shown in Table II which shows the 

surface N content of NH2-MTS and DN-MTS are comparable, while that of NN-MTS is 

higher, consistent with the compositions of the organo-amines. This also suggests that 

the surface loading of grafted organic groups is comparable for three organosilanes 

explored. 

 
Table II: Surface elemental composition of organo-amine functionalized MTS samples 

Sample Atomic 

Si (%) 

Atomic 

C (%) 

Atomic 

O (%) 

Atomic 

N (%) 

mmol 

N/g cat 

NH2-MTS 17.5 32.0 47.4 3.2 1.65 

2.39 NN-MTS 10.9 48.8 36.7 3.7 

DN-MTS 14.6 38.6 44.0 2.8 1.76 

MTS 10.7 54.1 35.2 - - 

 

Confirmation of the nature of the grafted groups was provided DRIFT Figure 5 

which shows the IR spectra of the non-functionalized and functionalized MTS. All 

samples show strong bands for Si-O-Si at 1067 cm
-1 

for the support, with the parent 

MTS, also exhibiting peaks at 3569 and 970 cm
-1

due to the presence of Si-OH. 

Following functionalization with organo-amine groups, the Si-OH features are attenuated 

and a C-N stretching mode was observed ~1250 cm
-1

. A new band emerges around 3250-

3400 cm
-1 

for (NH2-MTS) and (NN-MTS) characteristic of primary NH2 vibrations. For 

tertiary amines (DN-MTS), there was no N-H band observed in this region. C-H 

stretching band at range 2850-3000 cm
-1

 was observed for all amine functionalized MTS. 
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Figure 5. DRIFT spectra for MTS functionalized with organo-amines. 

Catalytic activity  

The catalyst activity was investigated by transesterification of tributyrin at 60 

°C (Figure 6). Conversion and yield were observed to increase from NH2-MTS (8.9%, 

2.8 mmol) <NN-MTS (22%, 3.9 mmol) <DN-MTS (26.7%, 4.3 mmol) suggesting there 

is an impact of amine functionality on transesterification activity. The initial rates for 

conversion of TB were 0.076, 0.173 and 0.593 mmolh
-1

 respectively, which when 

normalized by the N content per g catalyst used (Table II) gives turnover frequencies of 

0.9, 6.75 and 1.45 h
-1

 for NH2-MTS, NN-MTS and DN-MTS catalysts respectively, 

confirming the superior performance of the tertiary amine.  

 

Figure 6. (Left) tributyrin conversion and (Right) methylbutyrin yield, during transesterification of tributyrin with 

methanol using amine functionalized MTS catalysts. 
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Future work will explore the quantitative relationships between base site 

loading and strength and activity, and benchmark these against the established literature 

for alternative solid acid catalysts[24-26], notably sulfonic acid functionalised 

mesoporous silica analogues[27-29]. 

CONCLUSIONS 

Mesoporous silicas were successfully synthesized using castor oil as pore-

directing agent under acidic conditions. The obtained mesoporous silicas were suitable 

for functionalization using organoamines via post-synthesis method to produce solid base 

catalysts, with the effect of primary, secondary and tertiary amines explored. The 

synthesized materials showed large surface area and uniform pore size distribution which 

is a desired characteristic of mesoporous materials, in spite of lack of long range order of 

the pores. Surface loadings of organoamine groups were comparable suggesting the 

grafting efficiency of RNH2, NN and DN organosilanes were similar and not restricted 

by changes in steric bulk. Transesterification reactions using the basic modified MTS 

surface was achieved and demonstrated an increase in conversion of TB as the catalyst 

was varied from NH2-MTS to DN-MTS suggesting the tertiary amine is more efficient 

for transesterification and has potential for biodiesel synthesis. 
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