11,387 research outputs found

    Local status and power in area-based health improvement partnerships

    Get PDF
    This is the authors' PDF version of an article published in Health© 2014. The definitive version is available at http://hea.sagepub.comArea-based initiatives (ABIs) have formed an important part of public policy towards more socio-economically deprived areas in many countries. Co-ordinating service provision within and across sectors has been a common feature of these initiatives. Despite sustained policy interest in ABIs, little empirical work has explored relations between ABI providers and partnership development within this context remains under-theorised. This paper addresses both of these gaps by exploring partnerships as a social and developmental process, drawing on concepts from figurational sociology to explain how provider relations develop within an ABI. Qualitative methods were used to explore, prospectively, the development of an ABI targeted at a town in the north west of England. A central finding was that, although effective delivery of ABIs is premised on a high level of coordination between service providers, the pattern of interdependencies between providers limits the frequency and effectiveness of cooperation. In particular, the interdependency of ABI providers with others in their organisation (what is termed here ‘organisational pull’) constrained the ways in which they worked with providers outside of their own organisations. ‘Local’ status, which could be earned over time, enabled some providers to exert greater control over the way in which provider relations developed during the course of the initiative. These findings demonstrate how historically constituted social networks, within which all providers are embedded, shape partnership development. The theoretical insight developed here suggests a need for more realistic expectations among policy makers about how and to what extent provider partnerships can be managed. Keywords: partnership, collaboration, community services, area-based initiatives, organisational pull, figurational sociologyNational Health Service (NHS

    The absolute infrared magnitudes of type Ia supernovae

    Full text link
    The absolute luminosities and homogeneity of early-time infrared (IR) light curves of type Ia supernovae are examined. Eight supernovae are considered. These are selected to have accurately known epochs of maximum blue light as well as having reliable distance estimates and/or good light curve coverage. Two approaches to extinction correction are considered. Owing to the low extinction in the IR, the differences in the corrections via the two methods are small. Absolute magnitude light curves in the J, H and K-bands are derived. Six of the events, including five established ``Branch-normal'' supernovae show similar coeval magnitudes. Two of these, SNe 1989B and 1998bu, were observed near maximum infrared light. This occurs about 5 days {\it before} maximum blue light. Absolute peak magnitudes of about -19.0, -18.7 and -18.8 in J, H & K respectively were obtained. The two spectroscopically peculiar supernovae in the sample, SNe 1986G and 1991T, also show atypical IR behaviour. The light curves of the six similar supernovae can be represented fairly consistently with a single light curve in each of the three bands. In all three IR bands the dispersion in absolute magnitude is about 0.15 mag, and this can be accounted for within the uncertainties of the individual light curves. No significant variation of absolute IR magnitude with B-band light curve decline rate, Delta m_{15}(B), is seen over the range 0.87<Delta m_{15}(B)<1.31. However, the data are insufficient to allow us to decide whether or not the decline rate relation is weaker in the IR than in the optical region. IR light curves of type Ia supernovae should eventually provide cosmological distance estimates which are of equal or even superior quality to those obtained in optical studies.Comment: 19 pages, 9 figures, MNRAS in press (includes Referee's changes

    String Threshold corrections in models with spondaneously broken supersymmetry

    Get PDF
    We analyse a class of four-dimensional heterotic ground states with N=2 space-time supersymmetry. From the ten-dimensional perspective, such models can be viewed as compactifications on a six-dimensional manifold with SU(2) holonomy, which is locally but not globally K3 x T^2. The maximal N=4 supersymmetry is spontaneously broken to N=2. The masses of the two massive gravitinos depend on the (T,U) moduli of T^2. We evaluate the one-loop threshold corrections of gauge and R^2 couplings and we show that they fall in several universality classes, in contrast to what happens in usual K3 x T^2 compactifications, where the N=4 supersymmetry is explicitly broken to N=2, and where a single universality class appears. These universality properties follow from the structure of the elliptic genus. The behaviour of the threshold corrections as functions of the moduli is analysed in detail: it is singular across several rational lines of the T^2 moduli because of the appearance of extra massless states, and suffers only from logarithmic singularities at large radii. These features differ substantially from the ordinary K3 x T^2 compactifications, thereby reflecting the existence of spontaneously-broken N=4 supersymmetry. Although our results are valid in the general framework defined above, we also point out several properties, specific to orbifold constructions, which might be of phenomenological relevance

    Universality properties of N=2 and N=1 Heterotic threshold corrections

    Get PDF
    In the framework of heterotic compactifications, we consider the one-loop corrections to the gauge couplings, which were shown to be free of any infra-red ambiguity. For a class of N=2 models, namely those that are obtained by toroidal compactification to four dimensions of generic six-dimensional N=1 ground states, we give an explicit formula for the gauge-group independent thresholds, and show that these are equal within this class, as a consequence of an anomaly-cancellation constraint in six dimensions. We further use these results to compute the (N=2)-sector contributions to the thresholds of N=1 orbifolds. We then consider the full contribution of N=1 sectors to the gauge couplings which generically are expected to modify the unification picture. We compute such corrections in several models. We finally comment on the effect of such contributions to the issue of string unification

    Renormalization-Scale Invariance, Minimal Sensitivity, and the Inclusive Hadronic Decays of a 115 GeV Higgs Particle

    Get PDF
    Known perturbative expressions for the decay rates of 115 GeV Higgs particle into either two gluons or a bbˉb\bar{b} pair are shown to exhibit renormalization-scale-(ÎŒ\mu)-dependence that is largely removed via renormalization-group/Pade-approximant estimates of these rates' next order contributions. The extrema in ÎŒ\mu characterizing both rates, as determined from fully-known orders of perturbation theory, are very nearly equal to corresponding ÎŒ\mu-insensitive rates obtained via estimation of their next order contributions, consistent with "minimal-sensitivity" expectations.Comment: 12 pages, 3 figures, LaTe

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree ≀r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code Câ€ČC', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then Câ€ČC' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials
    • 

    corecore