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1. Introduction

In the past several years, there has been significant progress in trying to compare low-
energy predictions of string theory with data [1]–[22]. String theory gives us the possibility
of unifying gauge, Yukawa and gravitational interactions. The presence of supersymmetry
is usually required in order to deal with hierarchy problems, although in the context of
supergravity this is not automatic due to the presence of gravity (this can be verified in the
framework of strings, where gravitational interactions are properly taken into account [23]).
The standard folklore demands N = 1 supersymmetry in order for the theory to possess
chiral fermions. Extended-supersymmetry ground states could also be considered provided
the supersymmetry is spontaneously broken to N = 1 [24, 25]. Indeed, there are indications
that such theories become chiral at some special points of the string moduli space.

The quantities that are most easily comparable to experimental data are effective gauge
couplings of the observable sector, as well as Yukawa couplings. It is well known that the
low-energy world is not supersymmetric. Thus (N = 1) supersymmetry has to be broken
spontaneously at some scale of the order of 1 TeV (for hierarchy reasons). Although there
are ways to break supersymmetry in string theory [26, 27, 28], it is fair to say that none so far
has yielded a phenomenologically acceptable model. The issue of supersymmetry breaking is
therefore an open problem. However, if we assume that its scale is of the order of 1 TeV and
the superpartner masses are around that scale, then non-supersymmetric thresholds are not
very important for dimensionless couplings (which include gauge and Yukawa couplings).
Thus, it makes sense to compute them and compare them with data in the context of
unbroken supersymmetry.

Threshold corrections appear in the relation between the running gauge coupling gi(µ)
of the low-energy effective field theory and the string coupling gstring which, assuming the
decoupling of massive modes, must have the following form:

16π2

g2
i (µ)

= ki
16π2

g2
string

+ bi log
M2

s

µ2
+ ∆i , (1.1)

where bi are the usual effective field theory beta-function coefficients of the group factor Gi,
and ki is the level of the associated affine Lie algebra. The thresholds ∆i are due to the
infinite tower of string modes and can be calculated at the level of string theory. On the
other hand, string unification relates the fundamental string scale Ms ≡ 1√

α′
to the Planck

scale MP = 1√
32πGN

and to the string coupling constant gstring which is associated with the
expectation value of the dilaton field. At the tree level this relation reads

Ms = gstringMP . (1.2)

Given the fact that low-energy data, assuming the minimal supersymmetric standard model
as the underlying low-energy field theory, indicate gauge unification at a scale MX ∼ 2×1016

GeV [29] which is two orders of magnitude less than the Planck scale, threshold corrections
play a crucial role in string unification. Their effect has been extensively studied in the
literature [18, 19, 20, 21] except for the moduli-dependent universal terms Y (T, U), which
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appear in the generic decomposition

∆i = ∆̂i − ki Y , (1.3)

and which have received little attention because they can be formally reabsorbed into a
redefinition of gstring. However, such a redefinition alters eq. (1.2) in a moduli-dependent
way and consequently the relation between string unification scale and Planck mass gets
modified. Following this observation, universal terms were evaluated explicitly in the context
of the symmetric Z2 × Z2 orbifold model [13], and their effect on on the unification scale of
gauge couplings was shown to consist of a decrease of the order of 5 to 10% with respect
to the case where these corrections are not taken into account. One of the purposes of
the present article is to extend these results to more general situations. This requires the
computation of one-loop gauge couplings and in particular of universal threshold corrections
in more general string solutions. It is remarkable that such a computation is possible and
exhibits interesting universality properties as it will appear in the sequel.

There are several procedures for computing the one-loop corrections to dimensionless
couplings in string theory. The most powerful and unambiguous one was described in [12, 30].
It amounts to turning on gravitational background fields that provide the ground state in
question with a mass gap ∆m2, and further background fields (magnetic fields, curvature
and auxiliary F fields) in order to perform a background-field calculation of the relevant
one-loop corrections.

The above procedure involves the following steps:
(i) We first regulate the infra-red by introducing a mass gap in the relevant ground state. This
is done by replacing the flat four-dimensional conformal field theory with the wormhole one,

IRQ×SO(3) k
2

[31, 32]. The mass gap is given by ∆m2 = M2
s

2(k+2)
, where k is a (dimensionless)

non-negative even integer.
(ii) We then turn on appropriate background fields, which are exact solutions of the string
equations of motion. Such backgrounds include curvature, magnetic fields and auxiliary F
fields1.
(iii) We calculate the one-loop vacuum amplitude as a function of these background fields.
(iv) We identify these background fields as solutions of the tree-level effective action. By
substituting them into the one-loop effective action and comparing with the string calculation
of the free energy, we can extract the renormalization constants at one loop.

In the following we will apply the aforementioned techniques to the calculation of string
loop corrections for gauge couplings. We will derive the full one-loop gauge coupling for
heterotic ground states with at least N = 1 supersymmetry. We will in particular obtain
an explicit formula for the universal part of the threshold corrections, and we will apply
this formula to show how, for the whole class of N = 2 ground states that come from two-
torus compactification of six-dimensional N = 1 theories, these thresholds are equal and
fully determined as a consequence of an anomaly-cancellation constraint in six dimensions.
We will also analyse their asymptotic behaviour and singularity structure. The universal
term in particular turns out to be singularity-free and continuous inside the moduli space,

1These are relevant for the study of the Kähler potential renormalization. For more details see [15].
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whereas some second derivatives with respect to the moduli, such as ∂T ∂T Y , . . . , are loga-
rithmically divergent along enhanced-symmetry planes. We will then turn to N = 1 orbifold
constructions in four dimensions and use the above results in order to evaluate exactly the
threshold corrections originated from the N = 2 sectors. Although we will not have much
to say concerning a general analytic formula for the (N = 1)-sector contributions, we will
present results for two cases, namely the Z3 and Z4 orbifolds. Here an interesting obser-
vation is the breakdown of the usual ansatz: ∆N=1

i cannot in general be decomposed as
bN=1
i ∆N=1 − ki Y

N=1. Using the above results, we will analyse the effect of the various
thresholds on the string unification scale, and show that they actually reduce that scale.
Finally, we will clarify the appearance of the Green–Schwarz term, which is another univer-
sal contribution present in N = 1 theories. As we will see, this one-loop correction plays
no role for the issue of unification, in contrast with the universal term Y appearing in the
decomposition (1.3).

We would like to stress here that the study of threshold corrections is important not only
for phenomenological purposes. It will eventually be useful in the context of string-string
dualities where one expects a deeper understanding of non-perturbative phenomena [33].

2. One-loop gauge couplings in heterotic ground states

As mentioned previously, an infra-red regulated version of a heterotic ground state is pro-
vided by substituting four-dimensional flat space with a suitably chosen conformal field
theory, namely a (1, 0) supersymmetric version of the IRQ× SO(3) k

2
σ-model2 [12, 30]. This

substitution preserves gauge symmetries, supersymmetry and modular invariance, and in-
troduces curvature as well as a linear dilaton in the time direction

Φ =
tMs√
k + 2

, (2.1)

necessary for making the total central charge equal to that of flat space. This amounts to a
universal mass gap for all string excitations (bosonic and fermionic) that can be read off (in
the Euclidean) from the left worldsheet Hamiltonian

L0 = −
1

2
+

1

4(k + 2)
+
p2
t

2
+
j(j + 1)

k + 2
+ · · · : (2.2)

∆m2 = µ2

2
with µ = Ms√

k+2
.

In this geometry, vertices for space-time fields such as F α
µν are truly marginal world-sheet

operators and therefore deformations induced by the associated background fields are exactly
calculable. This allows in particular for the computation of various one-loop correlators by
inserting the corresponding vertex operators. For magnetic fields we use

V magn
i ∝

(
J3 + i : ψ1ψ2 :

)
J i . (2.3)

2The group SO(3) is required instead of SU(2) for spin-statistics consistency.
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This turns on a magnetic field in the third space direction; J i is a right-moving affine current
in the Cartan of the ith gauge group simple factor (picking out a single Cartan direction
will be enough for our purposes), and J3 belongs to the SO(3) k

2
affine Lie algebra. There is

also a gravitational perturbation generated by

V grav ∝
(
J3 + i : ψ1ψ2 :

)
J

3
. (2.4)

The currents J3, J
3

and J i are normalized so that3

J3(z)J3(0) =
k

2z2
+ · · · , J

3
(z̄)J

3
(0) =

k

2z̄2
+ · · · , J i(z̄)J i(0) =

ki

z̄2
+ · · · . (2.5)

All the above perturbations are products of left times right Abelian currents and thus pre-
serve conformal invariance. This implies that the new backgrounds satisfy the string equa-
tions of motion at tree level to all orders in the α′ expansion.

Let F and R be constant magnetic and gravitational fields. The vacuum amplitude at
one loop, i.e. the free energy, in the presence of these backgrounds can be readily calculated
by performing the following Lorentz boost:

Q+I3
√
k/2+1

I
3

√
k/2

P i√
ki


′

=

 cosh φ sinhφ 0
sinhφ cosh φ 0

0 0 1


 1 0 0

0 cos θ sin θ
0 − sin θ cos θ




Q+I3
√
k/2+1

I
3

√
k/2

P i√
ki

 , (2.6)

where F and R have to be identified with sinh 2φ sin θ and sinh 2φ cos θ, respectively. Here

I3, I
3

stand for the zero modes of the respective SO(3) k
2

currents, Q is the zero mode of the

i : ψ1ψ2 : current and P i is the zero mode of the J i current. We assume that the gauge
background does not correspond to an anomalous U(1). This case can also be treated, but
is more complicated4. The free energy then reads:

α′2F string
one loop =

1

2(2π)4

∫
F

d2τ

( Im τ )2
D string

one loop =
1

2(2π)4

∫
F

d2τ

( Im τ )2

〈
e−2π Im τ δ(L0+L0)

〉
, (2.7)

with

δL0 = δL0 =

√
1 + F2 +R2 − 1

2

(Q+ I3)
2

k + 2
+

1

R2 + F2

R I
3

√
k

+ F
P i√
2ki

2


+
Q+ I3

√
k + 2

R I
3

√
k

+ F
P i√
2ki

 . (2.8)

3Our normalization is the one widely used in the literature; it corresponds to the situation where the
highest root of the algebra has length squared ψ2 = 2.

4Since anomalous U(1)’s are broken at scales comparable with the string scale, their running is irrelevant
for low-energy physics.
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Expanding to second order in the background fields, we find:

D string
one loop = 〈1〉

+
8π2( Im τ )2R2

k(k + 2)

〈(
Q+ I3

)2 (
I

3
)2
−

k

8π Im τ

((
Q+ I3

)2
+
k + 2

k

(
I

3
)2
)〉

+
4π2( Im τ )2F2

ki(k + 2)

〈(
Q+ I3

)2
P

2

i −
ki

4π Im τ

((
Q+ I3

)2
+
k + 2

2ki
P

2

i

)〉
+ · · · , (2.9)

where the dots stand for higher orders in F and R.

From now on we will assume that our ground state has at least N = 1 supersymmetry5.
In such ground states, terms in (2.9) that do not contain the helicity operator Q vanish
because of the presence of the fermionic zero modes, and terms linear in Q vanish due to
rotational invariance, 〈I3〉 = 0. Thus for N = 1 ground states, (2.9) becomes

D string
one loop =

8π2( Im τ )2

k + 2

〈
Q2

(
R2

k

((
I

3
)2
−

k

8π Im τ

)
+
F2

2ki

(
P

2

i −
ki

4π Im τ

))〉
+ · · · .

(2.10)
The generic N = 1 four-dimensional vacuum amplitude has the form

〈1〉 =
1

Im τ |η|4
∑

a,b=0,1

ϑ
[
a
b

]
η

C

[
a

b

]
Γ
(
µ

Ms

)
= 0 , (2.11)

where C
[
a
b

]
is the contribution of the internal conformal field theory, and

Γ(x) = −2x2 ∂

∂x

[
σ(x)− σ(2x)

]
with σ(x) =

1

x

∑
m,n∈Z

exp
(
−

π

Im τ x2
|m+ nτ |2

)
(2.12)

at x = (k + 2)−
1
2 = µ/Ms stands for the SO(3) k

2
partition function normalized so that

limx→0 Γ(x) = 1. This extra factor, which can be consistently removed, ensures the conver-
gence of integrals such as those appearing in (2.7), at large values of Im τ . Expression (2.11)
allows us to recast (2.10) as follows:

D string
one loop = −

4πi

k + 2

Im τ

|η|4
∑

a,b=0,1

F2

ki

∂τϑ
[
a
b

]
η

(
P

2
i −

ki

4π Im τ

)
C

[
a

b

]
Γ

(
1

√
k + 2

)

−
R2

6k

∂τϑ
[
a
b

]
η

C

[
a

b

] (
Ê2 +

2(k + 2)

iπ
∂τ̄

)
Γ

(
1

√
k + 2

)+ · · · , (2.13)

where P
2
i acts as i

π
∂
∂τ̄

on the appropriate subfactor of the 32 right-moving-fermion contribu-
tion, and

Ê2 ≡
6i

π
∂τ̄ log

(
Im τ η̄2

)
= E2 −

3

π Im τ
; (2.14)

5The general formula in the absence of supersymmetry can be found in [12].
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E2 is an Eisenstein holomorphic function (see (3.7)) and Ê2 is modular-covariant of degree
2. Since we are interested in the large-k limit, we can expand (2.13) in powers of 1/k. In
the next-to-leading order, the above expression reads:

D string
one loop = −

4πi

k

Im τ

|η|4
Γ

(
1

√
k + 2

) ∑
a,b=0,1

F2

ki

∂τϑ
[
a
b

]
η

(
P

2
i −

ki

4π Im τ

)
C

[
a

b

] (
1−

2

k

)

−
R2

6k

∂τϑ
[
a
b

]
η

Ê2C

[
a

b

]
+O

(
1

k2

)+ · · · . (2.15)

It deserves stressing here that the radiative corrections (2.15) include exactly the back-
reaction of the gravitationally coupled fields; this accounts for the term ∝ 1

4π Im τ
, which is

universal and guarantees modular invariance.

In order to determine the string-induced one-loop renormalization for the gauge couplings,
we have to compare the above free energy with the one that would have been computed in
the low-energy field theory, in the presence of the same backgrounds. If one normalizes
the effective theory generators such that the highest roots of the group algebra have length
squared equal to 1 6, one obtains (more details can be found in [14]):

α′2F effective
one loop =

1

k

(
−ZF F

2 + higher orders in F and R
)

+O
(

1

k2

)
, (2.16)

where ZF stands for the vector multiplet wave-function renormalization, as appears in the
low-energy effective action (see (A.1) and (A.2))

S gauge sector
tree & one loop = −

∫
d4x
√
G
(
e−2Φ + ZF

)∑
i,a

1

4g2
i

F a
i µν F

aµν
i . (2.17)

Comparing eq. (2.16) with eqs. (2.7) and (2.15), and taking into account the difference
between the corresponding normalizations, the net result for ZF reads:

ZF

(
µ

Ms

)
=

i

16π3ki

∫
F

d2τ

Im τ

Γ(µ/Ms)

|η|4
∑

a,b=0,1

∂τϑ
[
a
b

]
η

(
P

2
i −

ki

4π Im τ

)
C

[
a

b

]
. (2.18)

Introducing as usual gstring = exp〈Φ〉, we derive from eqs. (2.17) and (2.18) the effective
one-loop string-corrected coupling gi, eff :

16π2

g2
i, eff

= ki
16π2

g2
string

+ 16π2kiZF

(
µ

Ms

)

= ki
16π2

g2
string

+
i

π

∫
F

d2τ

Im τ

Γ(µ/Ms)

|η|4
∑

a,b=0,1

∂τϑ
[
a
b

]
η

(
P

2

i −
ki

4π Im τ

)
C

[
a

b

]
. (2.19)

Equation (2.19) has been obtained by using an explicitly infra-red-regulated string loop
amplitude. However, it is important to stress that the final relation between the running

6These are the usual normalizations that lead in particular to the tree-level relation Ms =
gstring√
32πGN

.
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gauge couplings of the low-energy field theory and the string coupling should not depend
on how the infra-red has been regulated; put differently, this relation should not depend on
the function Γ( µ

Ms
). In order to show this property, and eventually establish the expression

for the running low-energy gauge couplings, we first isolate the contribution of the massless
states responsible for the non-trivial infra-red behaviour of the integral in (2.18): we rewrite
(2.19) in a form where we subtract and add back a bi

∫
F

d2τ
Im τ

Γ( µ
Ms

) term, a manipulation
perfectly well defined thanks to the presence of the regulator Γ( µ

Ms
). Here bi are the full

beta-function coefficients for the group factor Gi:

bi = lim
Im τ→∞

i

π

1

|η|4
∑

a,b=0,1

∂τϑ
[
a
b

]
η

(
P

2
i −

ki

4π Im τ

)
C

[
a

b

]
. (2.20)

Using the result ∫
F

d2τ

Im τ
Γ
(
µ

Ms

)
= log

M2
s

µ2
+ log

2eγ+3

π
√

27
+O

(
µ

Ms

)
, (2.21)

and taking the limit µ → 0 in the remaining integral of (2.19) since it does not suffer any
longer from divergences at Im τ →∞ leads to:

16π2

g2
i, eff

= ki
16π2

g2
string

+ bi log
M2

s

µ2
+ bi log

2 eγ+3

π
√

27

+
∫
F

d2τ

Im τ

 i

π

1

|η|4
∑

a,b=0,1

∂τϑ
[
a
b

]
η

(
P

2

i −
ki

4π Im τ

)
C

[
a

b

]
− bi

 . (2.22)

We can determine the running gauge couplings of the low-energy effective field theory by
identifying the above string theory one-loop corrected coupling gi, eff with the corresponding
field theory one-loop gauge coupling, regulated in the infra-red in a similar fashion as the
string theory. The effective field theory has also to be supplied with an ultraviolet cut-off.
If we use dimensional regularization, we obtain the following field theory one-loop corrected
coupling:

16π2

g2
i, eff

∣∣∣∣∣
field theory

=
16π2

g2
i, bare

+ bi (4π)ε
∫ ∞

0

dt

t1−ε
ΓFT

(
µ
√
πM

)
, (2.23)

where M is an arbitrary mass scale, and ΓFT is the field theory counterpart of the string
infra-red regulator, obtained by dropping all winding modes 7 in (2.12). On the other hand,
one knows that in the DR scheme the relation between the field theory bare and running
coupling is

16π2

g2
i, bare

=
16π2

g2
i (µ)

− bi (4π)ε
∫ ∞

0

dt

t1−ε
e−t

µ2

M2 . (2.24)

Plugging (2.24) into (2.23) and performing the resulting integral in the limit µ, ε→ 0, leads
to the following expression for the field theory one-loop corrected coupling:

16π2

g2
i, eff

∣∣∣∣∣
DR

field theory

=
16π2

g2
i (µ)

+ bi (2γ + 2) ; (2.25)

7The extra
√
π in the argument of ΓFT accounts for the identification of the (dimensionless in the above

convention) Schwinger proper-time parameter t with π Im τ .
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identifying the latter with (2.22), we finally obtain [13] the already anticipated eq. (1.1)
with

∆i =
∫
F

d2τ

Im τ

 i
π

1

|η|4
∑

a,b=0,1

∂τϑ
[
a
b

]
η

(
P

2
i −

ki

4π Im τ

)
C

[
a

b

]
− bi

 + bi log
2 e1−γ

π
√

27
. (2.26)

These are the full threshold corrections in the DR scheme. As advertised previously, this
expression no longer depends on the infra-red regularization prescription. This result could
have been anticipated as a consequence of the cancellation of the infra-red divergences be-
tween the fundamental and the effective theory since they have the same massless spectrum.
However it could only be proved [13] in the presence of a consistent infra-red regulator,
similar in both theories. Moreover, it is important to emphasize that (2.26) contains rigor-
ously all universal terms that were missing in previous approaches [3, 4] and that we will be
analysing in the sequel.

We would like to stress that the computation we presented here was performed in the
dilaton frame for both string theory and the effective field theory in which we have used
a moduli-dependent convention for the masses. To put it differently, the kinetic terms
of the various fields are normalized to one, and this is a physical basis. In this frame,
the string perturbative expansion appears as a power series with respect to the coupling
gstring = exp〈Φ〉, which is a well defined parameter that remains unaltered at any order of
the expansion. Therefore, it provides an unambiguous control of the latter. Moreover, as
long as the string ground state possesses at least N = 1 supersymmetry, the Planck scale MP

does not receive any correction in perturbation theory [14], which means that the tree-level
relation (1.2) holds to all orders. This property plays an important role in the low-energy
unification of the effective couplings [13].

Instead of the dilaton frame, one could use the S-frame in the effective supergravity. In
that case, the expansion parameter is 1

ImS
, and this turns out to be convenient for analysing

the holomorphicity and duality properties which are somehow obscured in the dilaton frame,
and consequently the issue of supersymmetry. On the other hand, this parameter must be
redefined at each order of the perturbative expansion, as a consequence of the antisymmetric-
moduli mixing due to the Green–Schwarz term [5]. This term changes the definition of the
axion and, by supersymmetry, that of the dilaton. Thus, terms of order n in the S-frame get
contributions from all loop orders up to the nth. Furthermore, a new universal-threshold-
like correction appears now along with the thresholds (2.26), which is again a remnant of
the ten-dimensional Green–Schwarz term [5, 6]. This term is only present in N = 1 models
and is moduli-dependent in contrast (see section 4) with the (N = 1)-sector contribution of
the corrections (2.26). This extra moduli dependence, which enters from the effective field
theory matching in the S-frame, is responsible for the modification of the analytic properties
in this frame. The appearance of the Green–Schwarz term in the S-frame is summarized in
appendix A.

As a final remark, we would like to comment on the structure of the threshold corrections
as they appear in the dilaton frame, which is the frame that we will be using in our subsequent
computations. Part of the thresholds (2.26) is universal and this enables us to split (2.26)
according to eq. (1.3). As we have already mentioned, the universal piece Y in (1.3) contains,
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among other things, contributions from the universal sector (gravity in particular). Such
contributions are not taken into account in grand unified theories while in string theory they
are well defined and calculable quantities. Moreover, Y is infra-red-finite, which in particular
means that it is continuous and remains finite when extra states become massless at some
special values of the moduli. Thus Y is a finite correction to the “bare” string coupling
gstring, and we can write (1.1) as

16π2

g2
i (µ)

= ki
16π2

g2
renorm

+ bi log
M2

s

µ2
+ ∆̂i , (2.27)

where we have defined a “renormalized” string coupling by [13]

g2
renorm =

g2
string

1− Y
16π2 g

2
string

. (2.28)

Of course, such a coupling is meaningful provided it appears as the natural expansion pa-
rameter in several amplitudes that are relevant for the low-energy string physics. In general,
this might not be the case as a consequence of some arbitrariness in the decomposition (1.3).
Examples of this kind arise in N = 1 models (see the Z4 orbifold in section 4) as well as in
certain N = 2 constructions [24]. It is important to keep in mind that this “renormalized”
string coupling is defined here in a moduli-dependent way. This moduli dependence affects
the string unification [13]. Indeed, as we will see in the sequel, when proper unification of
the couplings appears, namely when ∆̂i can be written as bi∆, their common value at the
unification scale is grenorm, which plays therefore the role of a phenomenological parameter.
Moreover, the unification scale turns out to be proportional to Ms. The latter can be ex-
pressed in terms of the “low-energy” parameters grenorm and MP , by using eq. (1.2) and its
non-renormalization property [14], as well as (2.28):

Ms =
MP grenorm√

1 + Y
16π2 g2

renorm

; (2.29)

this involves the moduli-dependent function Y . As is shown in appendix A, relation (2.29)

holds also in the S-frame where, at one loop, g−2
renorm = ImS + ∆GS

16 π2 with ∆GS the Green–
Schwarz term (see eq. (A.18)). Despite the presence of the moduli-dependent universal
function ∆GS , the string scale Ms, and consequently the unification scale, are only affected
by the universal threshold Y .

3. Universal thresholds for a class of N = 2 theories

Let us now concentrate on N = 2 ground states. We will focus on models that come from
toroidal compactification of generic six-dimensional N = 1 string theories. There are of
course more general N = 2 models in four dimensions that cannot be viewed as toroidal
compactifications of a six-dimensional theory [24]. These will be dealt with in detail in a
separate publication. In the cases at hand, however, there is a universal two-torus, which
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provides the (perturbative) central charges of the N = 2 algebra. Therefore, (2.26) becomes

∆i =
∫
F

d2τ

Im τ

(
Γ2,2

(
T, U, T , U

)
η̄24

(
P

2
i −

ki

4π Im τ

)
Ω− bi

)
+ bi log

2 e1−γ

π
√

27
, (3.1)

where T and U are the complex moduli of the two-torus, Ω is an antiholomorphic function
and

Γ2,2

(
T, U, T , U

)
=

∑
m,n∈Z

exp
(

2πiτ
(
m1 n

1 +m2 n
2
)

−
π Im τ

ImT ImU

∣∣∣Tn1 + TUn2 + Um1 −m2

∣∣∣2 ) . (3.2)

From (3.1), we observe that the function

F i =
1

η̄24

(
P

2

i −
ki

4π Im τ

)
Ω (3.3)

is modular invariant. Consider the associated function that appears in the R2-term renor-
malization (see eq. (2.15) or ref. [9] for more details),

F grav =
Ê2

12

Ω

η̄24
=

1

η̄24

(
i

π
∂τ̄ log η̄ −

1

4π Im τ

)
Ω , (3.4)

which is also modular invariant, and eventually leads to the gravitational anomaly. The
difference F i − ki F grav is an antiholomorphic function, which is modular invariant. It has
at most a simple pole at τ → i∞ (associated with the heterotic unphysical tachyon) and is
finite inside the moduli space of the torus. This implies that

F i = ki F grav +Ai j(τ̄ ) +Bi , (3.5)

where Ai and Bi are constants to be determined, and j(τ ) = 1
q

+ 744 +O(q), q = exp(2πiτ )

is the standard j-function. The modular invariance of F grav implies that Ω is a modular
form of weight 10, which is finite inside the moduli space. This property fixes

Ω = ξ E4E6 , (3.6)

where E2n is the nth Eisenstein series:

E2 =
12

iπ
∂τ log η = 1− 24

∞∑
n=1

n qn

1− qn
, (3.7)

E4 =
1

2

(
ϑ8

2 + ϑ8
3 + ϑ8

4

)
= 1 + 240

∞∑
n=1

n3qn

1− qn
, (3.8)

E6 =
1

2

(
ϑ4

2 + ϑ4
3

) (
ϑ4

3 + ϑ4
4

) (
ϑ4

4 − ϑ
4
2

)
= 1− 504

∞∑
n=1

n5qn

1− qn
. (3.9)
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Putting everything together in (3.1) we obtain:

∆i =
∫
F

d2τ

Im τ

(
Γ2,2

(
T, U, T, U

)(ξki
12

Ê2E4E6

η̄24
+Ai j +Bi

)
− bi

)
+ bi log

2 e1−γ

π
√

27
. (3.10)

There are two constraints that allow us to fix the constants Ai, Bi. The first is that the
1/q̄ pole is absent from the group trace, which gives

Ai = −
ξki

12
. (3.11)

The second is (2.20), which implies

744Ai +Bi − bi + ki bgrav = 0 , (3.12)

where the constant term in the large- Im τ expansion of F grav

bgrav = lim
Im τ→∞

(
F grav −

ξ

12

1

q̄

)
= −22 ξ (3.13)

is the gravitational anomaly in units where a hypermultiplet contributes 1
12

[9]. Plugging
(3.11)–(3.13) in (3.10), we finally obtain:

∆i = bi

(
log

2 e1−γ

π
√

27
+
∫
F

d2τ

Im τ

(
Γ2,2

(
T, U, T, U

)
− 1

))

+
ξki

12

∫
F

d2τ

Im τ
Γ2,2

(
T, U, T , U

)(Ê2E4E6

η̄24
− j + 1008

)
. (3.14)

The first integral in (3.14) was computed explicitly in [4] and recently generalized in [17]:∫
F

d2τ

Im τ

(
Γ2,2

(
T, U, T, U

)
− 1

)
= − log

(
|η(T )|4|η(U)|4 ImT ImU

)
− log

8π e1−γ

√
27

. (3.15)

Therefore, as advertised above, we can write8

∆i = bi ∆− ki Y , (3.16)

with
∆ = − log

(
4π2|η(T )|4|η(U)|4 ImT ImU

)
(3.17)

and

Y = −
ξ

12

∫
F

d2τ

Im τ
Γ2,2

(
T, U, T , U

) ((
E2 −

3

π Im τ

)
E4E6

η̄24
− j + 1008

)
(3.18)

(we have used eq. (2.14)). This form of the universal term was determined for the case of
Z2 × Z2 orbifolds in [13] and further discussed in [14].

8This is not true for more general N = 2 ground states (see [24]).
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The coefficient ξ can be related to the number of massless vector multiplets NV and hy-
permultipletsNH via the gravitational anomaly (bgrav), which can also be computed from the
low-energy theory of massless states. In units where a scalar contributes 1, the graviton con-
tributes 212, the antisymmetric tensor 91, the gravitino −233

4
, a vector −13 and a Majorana

fermion 7
4
; therefore the N = 2 supergravity multiplet contributes 212− 2233

4
− 13 = 165

2
, the

tensor multiplet contributes −13 + 27
4

+ 1 + 91 = 165
2

, a vector multiplet −13 + 27
4

+ 2 = −15
2

and a hypermultiplet 27
4

+ 4 = 15
2

. Thus in the units of (3.13),

bgrav =
22−NV +NH

12
, (3.19)

and hence

ξ = −
1

264
(22−NV +NH) . (3.20)

For the models at hand we can go even further and completely determine ξ. One can indeed
show that NH − NV is a universal constant for the whole class of four-dimensional N = 2
models obtained by toroidal compactification of any N = 1 ground state in six dimensions.
The argument is the following. From the six-dimensional point of view, the models at hand
must obey an anomaly-cancellation constraint, which reads: NH −NV |six dim = 244, and
does not depend on the kind of compactification that has been performed from ten to six
dimensions9 [35]. After two-torus compactification to four dimensions, two extra U(1)’s
appear, leading to the relation

NH −NV = 242 (3.21)

between the numbers of vector multiplets and hypermultiplets. In turn, eq. (3.20) implies
that for this class of ground states ξ = −1. As a consequence, all N = 2 models under
consideration have equal universal thresholds, given by

Y
(
T, U, T, U

)
=

1

12

∫
F

d2τ

Im τ
Γ2,2

(
T, U, T , U

) ((
E2 −

3

π Im τ

)
E4E6

η̄24
− j + 1008

)
. (3.22)

As an example, consider the case of the Z2 orbifold, where we have a gauge group E8×E7×
SU(2) × U(1)2 and thus NV = 386. The number of massless hypermultiplets is NH = 628.
Using these numbers in (3.20) we obtain indeed ξ = −1. As expected by supersymmetry,
the corresponding universal threshold (3.22) is twice as big as a single-plane contribution of
the symmetric Z2 × Z2 orbifold analysed in [13]10.

Expression (3.22) can be further simplified if one uses a generalization of (3.15), valid for
more general modular-invariant functions, to integrate the last terms:

Y
(
T, U, T , U

)
=

1

12

∫
F

d2τ

Im τ
Γ2,2

(
T, U, T, U

) ((
E2 −

3

π Im τ

)
E4E6

η̄24
+ 264

)
9Actually, this constraint, which ensures that TrR4 vanishes, holds even when there occurs a symmetry

enhancement originated from non-perturbative effects, provided the number of tensor multiplets remains
NT = 1. Note that this six-dimensional anomaly-cancellation constraint is also used in [34], in relation to
four-dimensional quantities.

10The universal threshold computed in [13] corresponds to the three-plane contribution of the Z2 × Z2

model with Ti = T and Ui = U ∀i. A factor 2/3 is therefore needed to recover (3.22).
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+
1

3
log |j(T )− j(U)| . (3.23)

Using the method of orbits of the modular group, the remaining integral in (3.23) can also
be reduced to a multiple series expansion (see [17]). This is detailed in appendix B, where we
use a product representation of j(T )−j(U) to make more transparent the cancellation of the
logarithmic divergences occurring in both terms of (3.23) when T → U as a consequence of
the appearance of extra massless states. It is actually shown that Y is finite and continuous
inside the whole moduli space. We also present in this appendix numerical evaluation and
plots as well as various large-moduli behaviours of (3.22); the latter have some relevance in
the context of the decompactification problem (see [24]).

As far as the issue of unification is concerned, several observations are in order. Although
N = 2 models are not directly relevant for phenomenology, it is nevertheless interesting to
note that universal thresholds always decrease the unification scale. Indeed, by using eqs.
(2.27) and (3.16), it appears that unification of all couplings takes place (in the DR scheme)
at a scale

MU = MP gU e
∆
2

1√
1 + Y

16π2 g
2
U

, (3.24)

where
gU ≡ gα(MU ) =

gstring√
1− Y

16π2 g
2
string

(3.25)

for any group factor (this is the renormalized coupling introduced in (2.28)), ∆ and Y are
given by eqs. (3.17) and (3.23) respectively, and we have used explicitly (1.2) in order to
express the unification scale in terms of the effective field theory parameters MP and gU .
The last factor in (3.24) is due to the existence of the universal terms which lead to a shift of
the dilaton field in order to reabsorb the universal contributions into the string coupling. It
is interesting to observe that11 Y (R1, R2) > 0 (see appendix B). Therefore, this extra factor
always gives a lower unification scale with respect to the case where these terms are neglected.
On the other hand the first factor in (3.24) monotonically increases for radii moving away
from the self-dual point, while the second one monotonically decreases. Following [13] we
conclude that the minimum unification scale is reached at the self-dual point R1 = R2 = 1
with the value

Mmin
U ≈ 5.56× 1017 × gU ×

1√
1 + 0.15× g2

U

GeV . (3.26)

The last factor in this expansion represents the effect of the universal thresholds. Note that
results (3.24) and (3.26) are valid for the whole class of N = 2 models that were analysed
here above.

Besides the relevance that the universal contributions Y might have in the framework of
string unification, we should mention that they are also related to the one-loop correction of
the Kähler potential for the moduli fields [5, 6, 7, 15] (see also appendix A, eqs. (A.7) and

11We consider here the case ReT = ReU = 0, and we parametrize it as usually: ImT = R1R2 and
ImU = R2/R1.
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(A.15)), as is expected from supersymmetry:

K(1)
(
T, U, T , U

)
= −

1

16π2
Y
(
T, U, T , U

)
+ κ

(
T, U

)
+ κ̄

(
T , U

)
; (3.27)

here κ(T, U) is an analytic function which is irrelevant in the determination of the Kähler
metric but plays a role in the duality covariance of K(1). By using the identity

1

( ImT )2

∂2

∂τ∂τ̄
( Im τ Γ2,2) =

1

Im τ

∂2

∂T∂T
Γ2,2 (3.28)

in eqs. (3.22) and (3.27), it is easy to show that

∂2K(1)

∂T∂T
= −

1

128π2 ( ImT )2

∫
F

d2τ

( Im τ )2

i

π

∂

∂τ̄
( Im τ Γ2,2)

E4E6

η̄24

−
1

192π2 ( ImT )2

∫
F
d2τ

∂

∂τ
G(τ, τ̄ ) , (3.29)

where

G(τ, τ̄ ) =

(
i

2
Γ2,2 + Im τ

∂

∂τ̄
Γ2,2

)(
E2E4E6

η̄24
− j + 1008 −

3

π Im τ

E4E6

η̄24

)
. (3.30)

The first term in (3.29) is indeed the one-loop correction to the Kähler metric K
(1)

TT
as it

appears in [8]12 or [15]. The second one is a boundary term that vanishes for generic values
of the moduli. However, when T ∼ U , Γ2,2 ∼ 1 + q̄ + · · ·, and this term might develop finite
or even δ-function contributions. Actually, δ-functions are originated around T = U as

lim
Im τ→∞

Im τ

(
∂

∂τ̄
Γ2,2

)
1

q̄
= −4πi lim

Imτ→∞
Im τ exp

(
−π Im τ

|T − U |2

2 ImT ImU

)
= −8πi ( ImT )2 δ2(T − U) . (3.31)

It is nice to observe that these contributions are avoided for the same reason that Y remains
free of infra-red divergences when the gauge symmetry gets enlarged: the absence of poles

in E2E4E6

η̄24 − j+ 1008. However, the term − 3
π Im τ

E4E6

η̄24 in (3.30) will generate finite boundary
contributions at T = U , which will be further enhanced when T = U = i and T = U = ρ =
exp 2πi

3
. More precisely we have

−
1

192π2 ( ImT )2

∫
F
d2τ

∂

∂τ
G(τ, τ̄ ) = −

λ

64π2 ( ImT )2 (3.32)

with λ = 6 for T = U = ρ, λ = 4 for T = U = i, λ = 2 for generic T = U , and λ = 0
elsewhere.

12To make contact with this reference, one can use the following identity:

E4E6

η24
=
(
j(i) − j(τ)

)(∂ log j

∂ log q

)−1

.
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Finally, by using expression (B.11) it is easy to show that Y is continuous at T = U as long
as the moduli remain finite. On the other hand, ∂T ∂T Y develops logarithmic singularities:

∂T ∂T Y ∼ −
1

( ImT )2
log |T − U |+ regular terms, (3.33)

around T ∼ U , as is expected from general arguments. Those singularities are responsible
for non-trivial monodromy properties of the prepotential in these N = 2 models [8, 11, 17].
In connection with these properties, a comment is in order here: our present treatment
implies that the results of [17] for the case of vanishing Wilson lines provide the prepotential
for all N = 2 models that are toroidal compactifications of N = 1 six-dimensional theories.
Furthermore, this holds also for the special classes of Wilson lines dealt with in [17].

4. The case of N = 1 orbifolds

We come now to the N = 1 heterotic compactifications on orbifolds T6/G. We will restrict
to the case where G is Abelian. Although there is not any fundamental obstruction with the
non-Abelian situation, the computation is expected to be more complicated. In a generic
N = 1 orbifold compactification, both N = 1 and N = 2 supersymmetric sectors contribute
to the gauge coupling renormalization. This allows us to express the thresholds (2.26), which
appear in eq. (1.1), as

∆i = ∆N=1
i + ∆N=2

i

=
∑
N=1,2

∫
F

d2τ

Im τ

 i

π

1

|η|4
∑

a,b=0,1

∂τϑ
[
a
b

]
η

(
P

2
i −

ki

4π Im τ

)
CN

[
a

b

]
− bNi


+bNi log

2 e1−γ

π
√

27
, (4.1)

where bN=1,2
i are the contributions originated from N = 1, 2 supersymmetric sectors and

bi = bN=1
i + bN=2

i are the full beta-function coefficients of the N = 1 model.

Let us focus for the moment on the (N = 2)-sector contributions, which exhaust all the
dependence of the thresholds on the untwisted moduli of the torus T6/G. Such sectors are
present when some twists g ∈ G have unit eigenvalues, leaving therefore unrotated a complex
plane of T6. As was described in [4], these twists form a disjoint union

⋃
αGα ⊂ G: they

only share the identity corresponding to the N = 4 sector. Each Gα is the little group of
a given complex plane of T6, which needs not be the same for all Gα’s. Furthermore, the
subset of sectors generated by twists g ∈ Gα appears actually as the set of all twisted sectors
that define an orbifold model on T6/Gα. Thus we conclude that

∆N=2
i

[
T6/G

]
=
∑
α

|Gα|

|G|
∆i

[
T6/Gα

]
. (4.2)

On the other hand, the orbifold model on T6/Gα has N = 2 supersymmetry and can be
viewed as a two-torus compactification of a N = 1 supersymmetric model in six dimensions,
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the two-torus being the complex plane of T6 left invariant under Gα. Hence it belongs to the
class of models that have been studied in section 3, leading automatically to the following
result:

∆N=2
i = −

∑
α

bαi
|Gα|

|G|
log

(
4π2|η(Tα)|4|η(Uα)|4 ImTα ImUα

)
− ki Y

N=2 (4.3)

with

Y N=2 =
∑
α

|Gα|

|G|
Y
(
Tα, Uα, Tα, Uα

)
, (4.4)

where Y
(
Tα, Uα, T α, Uα

)
is given by eq. (3.22). In eqs. (4.3) and (4.4), Tα and Uα are

the moduli corresponding to the complex plane whose little group is Gα, and bαi are the
beta-function coefficients of the N = 2 orbifold T6/Gα, which allow us to express the N = 2
contributions to the beta-function coefficients as follows:

bN=2
i =

∑
α

bαi
|Gα|

|G|
. (4.5)

A few remarks are in order here. At the level of the T6/Gα orbifold, the moduli Tα and
Uα are completely free. When brought down to the N = 1 model, however, some of them
might be constrained in order to fit the discrete symmetry that is modded out. Therefore,
some of the arguments in expressions (4.3) and (4.4) are in general frozen to some specific
values (more details about that can be found in [4]).

As far as stringy N = 1 contributions are concerned, no moduli dependence appears in
the thresholds since none of the corresponding twists acts trivially on any plane inside T6.
On the other hand, no systematic factorization of a real function such as Γ2,2 is possible in
the integrand of the first term of (4.1). Consequently, one cannot advocate holomorphicity
and analytic properties to determine the generic structure for this threshold, as was done in
section 3 (see eqs. (3.1) and (3.6)). Nevertheless, in order to get a better appreciation of its
influence on the low-energy physics, we can proceed to a numerical estimation in the case
of two models, namely the symmetric Z3 and Z4 orbifolds. Our starting point is eq. (4.1),
that we can recast in the following form:

∆N=1
i = bN=1

i log
2 e1−γ

π
√

27
+ δi , (4.6)

where

δi =
∫
F

d2τ

Im τ

(
di (τ, τ̄ )− bN=1

i

)
−
ki
4π

∫
F

d2τ

( Im τ )2
y(τ, τ̄) (4.7)

and di(τ, τ̄) and y(τ, τ̄) are model-dependent functions.

(i) The symmetric Z3 orbifold

In this model, the gauge group isE8×E6×SU(3) and the absence of N = 2 sectors implies
that ∆N=2

i = bN=2
i = 0. The beta-function coefficients are (bi ≡ bN=1

i ) bE8 = −90, bE6 = 72
and bSU(3) = 72 respectively, while the functions introduced here above read (q = e2πiτ):

dE8 = −90− 540 q + 26460 q̄ + 918540 q
1
3 q̄

4
3 + 158760 q q̄ + 2963520 q̄2 +O

(
qr>2

)
,
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dE6 = 72 + 2916q
1
3 q̄

1
3 + 432q + 27432 q̄ + 2916q

4
3 q̄

1
3 + 921456q

1
3 q̄

4
3

+164592q q̄ + 2963520 q̄2 +O
(
qr>2

)
,

dSU(3) = dE6 ,

y = 108−
3

2

1

q̄
− 9

q

q̄
+ 15309 q

1
3 q̄

1
3 + 648 q + 150174 q̄ + 15309 q

4
3 q̄

1
3

+4496472 q
1
3 q̄

4
3 − 9

q3

q̄
+ 9010444 q q̄ + 12070176 q̄2 +O

(
qr>2

)
. (4.8)

After numerical integration, taking into account O
(
q

7
2

)
terms, we obtain:

δE8 ≈ −16.0 , δE6 = δSU(3) ≈ −5.0 . (4.9)

Note that δSU(3) − δE8 ≈ 11.0, in agreement with [3]. In this case , due to the fact that
dE6 = dSU(3) we can express the thresholds as for the N = 2 models (eq. (3.16)):

∆N=1
i = bN=1

i ∆N=1 − Y N=1 , (4.10)

where

∆N=1 = log
2 e1−γ

π
√

27
+ δ . (4.11)

Our numerical results lead to δ ≈ 0.07 and Y N=1 ≈ 9.82. However, this is not to be
considered as a generic feature of N = 1 sectors, and we will meet a counter example bellow.
In the case under consideration, using eqs. (1.1) and (4.10) as well as the non-renormalization
theorem [14] for (1.2), we can define a common unification scale for all gauge couplings:

MU = MP gU

√√√√2 e1−γ+δ

π
√

27

1√
1 + Y N=1

16π2 g2
U

, (4.12)

where we introduced, as previously, the effective field theory parameters MP and gU = 1
gi(MU )

which is the common coupling at the unification scale. This coupling is again the one that
was introduced in section 2 as the “renormalized” string coupling, grenorm (see eqs. (2.27)
and (2.28)). Contrary to the N = 2 case, here it is not possible to shift MU by moving the
moduli. Using our numerical results, we obtain:

MU ≈ 5.4× 1017 × gU ×
1√

1 + 0.06× g2
U

GeV. (4.13)

Thus the universal contributions lead to a small decrease of the unification scale, which is
of the order of 3% for gU ∼ 1.

(ii) The symmetric Z4 orbifold

The gauge group is now E8 × E6 × SU(2) × U(1). Here the set of N = 2 sectors is
that of the symmetric Z2 orbifold and the corresponding thresholds are given by eqs. (3.22),
(4.3) and (4.4). On the other hand, beta-function coefficients read: bN=1

E8
= −60, bN=1

E6
= 36,

bN=1
SU(2) = 12, bN=1

U(1) = 72 and bN=2
E8

= −30, bN=2
E6

= bN=2
SU(2) = bN=2

U(1) = 42, and

dE8 = −60 + 960 q
1
2 q̄

1
2 − 240 q + 14040 q̄ + 245760 q

1
4 q̄

5
4 +O

(
q2
)
,
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dE6 = 36 + 768q
1
4 q̄

1
4 + 144q + 14424 q̄ + 2496q

1
2 q̄

1
2 + 1536q

5
4 q̄

1
4

+247296q
1
4 q̄

5
4 +O

(
q2
)
,

dSU(2) = 12− 8
q

1
2

q̄
1
2

+ 1024 q
1
4 q̄

1
4 + 48 q + 8056 q̄ + 2048 q

5
4 q̄

1
4 + 313344 q

1
4 q̄

5
4 +O

(
q2
)
,

dU(1) = 72 + 12
q

1
2

q̄
1
2

+ 384 q
1
4 q̄

1
4 + 6240 q

1
2 q̄

1
2 + 288 q + 23976 q̄ + 768 q

5
4 q̄

1
4

+148224 q
1
4 q̄

5
4 +O

(
q2
)
,

y = 12−
1

q
− 4

q

q̄
+ 16

q
1
2

q̄
1
2

+ 4096 q
1
4 q̄

1
4 + 48 q + 161128 q

1
2 q̄

1
2 + 81856 q̄

−4
q2

q̄
+ 1220608 q

1
4 q̄

5
4 +O

(
q2
)
. (4.14)

Again, numerical evaluation performed with the same accuracy as before leads to:

δE8 ≈ −6.6 , δE6 ≈ 4.0 , δSU(2) ≈ 6.9 , δU(1) ≈ 0.4 . (4.15)

In this case the decomposition (4.10), which was usually adopted in the literature [18], does
not hold for the N = 1 contributions.

Putting together eqs. (4.1), (4.3), (4.4) and (4.6), we obtain for the threshold corrections
of the Z4 orbifold:

∆i = bN=1
i log

2 e1−γ

π
√

27
+ δi + bN=2

i ∆
(
T3, U3, T 3, U3

)
−

1

2
Y
(
T3, U3, T 3, U3

)
, (4.16)

where ∆ and Y are given by eqs. (3.17) and (3.23) respectively. The decomposition (3.16)
where bi are the full beta-function coefficients is no longer valid, and thus it is not possible
to define a unification scale common to all couplings. In order to gain insight it is however
interesting to determine the scale ME8−E6

U where the E8 and E6 gauge couplings meet. This
scale can be found by following steps similar to those introduced above. It is expressed
as a function of the moduli as well as of the common value of the couplings at that scale:
gE8

(
ME8−E6

U

)
= gE6

(
ME8−E6

U

)
= gE8−E6

U . The latter is related to gstring as usually, in a
moduli-dependent way. Again, the minimum of this unification scale is reached at T3 =
U3 = i with the result:

ME8−E6
U min ≈ 5.49× 1017 × gE8−E6

U ×
1√

1 + 0.08×
(
gE8−E6
U

)2
GeV . (4.17)

Furthermore, eq. (1.1) enables us to compute the splittings of the SU(2) and U(1) gauge
couplings with respect to the E8 and E6 ones, at that scale. We obtain:

1

g2
SU(2)

(
ME8−E6

U

) − 1

g2
E8

(
ME8−E6

U

) ≈ 0.035 (4.18)

and
1

g2
E8

(
ME8−E6

U

) − 1

g2
U(1)

(
ME8−E6

U

) ≈ 0.048 , (4.19)

which show that the relative splittings are of the order of 4 to 7%.
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5. Conclusions

Let us now summarize our results. By using a method introduced in [12] that allows us to
handle the infra-red problems, we have determined the complete one-loop gauge coupling
corrections (eq. (2.26)) for general heterotic four-dimensional models with at least N = 1
supersymmetry. These corrections contain both universal and group-factor dependent terms.
Our results for the latter are in agreement with those obtained previously following a different
procedure [3, 4], when evaluated within the same ultraviolet renormalization scheme, here the
DR scheme. This shows that the relation between the running gauge couplings of the low-
energy field theory and the string coupling does not depend on the infra-red regularization
prescription. It amounts to the decoupling of the (infinite tower of) massive states and
allows for an unambiguous definition of string effective theory. Such a conclusion could not
have been drown without using a consistent infra-red regulator. Although our result has
been established in the framework of an infra-red regulator induced by a particular four-
dimensional curved background, we would have reached the same conclusions within any
other background possessing similar properties, such as those listed in [32].

Going beyond what has been achieved in previous studies [13], we have determined the

moduli-dependent universal part Y
(
T, U, T, U

)
of the thresholds for the class of N = 2 four-

dimensional theories that come from torus compactification of six-dimensionalN = 1 ground
states. We have obtained an explicit formula for these thresholds (eq. (3.18)) which, thanks
to the relation between gauge and R2-term renormalizations, turns out to be related to the
quantity NH − NV . This is fully determined as a consequence of the anomaly cancellation
(gauge, gravitational and mixed) in the underlying six-dimensional theory. Therefore, the
whole class of models under consideration have equal universal thresholds. This implies in
particular that the results of [17] are actually more general, and provide the prepotential for
all N = 2 ground states that are toroidal compactifications of six-dimensional N = 1 vacua.

Using the method of orbits of the modular group, we have recasted the integral rep-
resentation of the above thresholds (3.22) as a power series expansion (eq. (B.11)). This

allowed us to analyse the singularity behaviour of Y
(
T, U, T, U

)
: although this function is

continuous inside the moduli space (in contrast to what was believed), its Laplacian, which
is the one-loop correction to the Kähler metric for moduli fields, diverges logarithmically
around enhanced-symmetry lines, but remains free of δ-function singularities. Finally, we
have used the series representation for analysing the asymptotics of the N = 2 universal
thresholds (eqs. (B.12) and (B.14)). The leading behaviour is linear with respect to each
radius. This blow up as well as the bad behaviour of the group-dependent contributions
lead to the well known decompactification problem in string theory. This problem is cured
by considering a class of N = 4 four-dimensional models, in which two supersymmetries are
spontaneously broken [24]. Such models can be thought of as freely acting orbifolds where
a translation is performed in the N = 2 invariant plane. Their behaviour at large radii
is drastically different from the standard orbifolds. Indeed, the N = 4 supersymmetry is
restored in the decompactification limit. Due to this restoration of the full supersymmetry,
the linear divergence of couplings with respect to the radii is absent and this provides a
solution to the decompactification problem. It is finally interesting to observe that models
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where the N = 4 supersymmetry is spontaneously broken down to N = 2 and N = 1 do
also exist [25]. For these, string-string dualities [33] and D-brane technology [36] allow for a
better understanding of the mass spectrum and the multiplicities of the perturbative as well
as non-perturbative BPS states [37]. This knowledge might eventually help for deriving the
structure of the non-perturbative threshold corrections in physically interesting N = 2 and
N = 1 ground states [25].

The results we obtained for the full threshold corrections enabled us to analyse system-
atically the unification properties of various models. Concerning the N = 2 ground states
that we have studied in section 3, we observed that the presence of the universal thresholds
Y (eq. (3.23)) leads to a lowering of the natural unification scale with minima reached at the
self-dual points T = U = i, ρ, and given in (3.26). More precisely, for g2

U = 1
2

we have a 5%
decrease while for g2

U = 1 we can reach 10%, with respect to the case where these corrections
are not taken into account.

The case of N = 1 models is phenomenologically more interesting. In our study we
analysed N = 1 orbifold constructions. In this case, the above achievements can be used
in order to determine analytically the (N = 2)-sector contributions to the thresholds with
the results (4.3) and (4.4). Concerning the contributions originated from the N = 1 sectors,
no general formula is available for the moment, except for the Green–Schwarz term, which
appears naturally in the S-frame but does not play any role in string unification, as we
showed in section 2 by using the results of appendix A. We therefore restricted our attention
to the particular cases of Z3 and Z4 symmetric orbifolds, which allowed us to draw some
interesting conclusions. For the Z3 orbifold, the decomposition (4.10) makes it possible to
define a unification scale for all couplings (eq. (4.12)), similar to the one that we introduced
here above in the case of N = 2 models (eq. (3.24)), but moduli-independent. Again
the presence of universal thresholds reduces this scale by a few percent. However, this
decomposition is accidental and does not apply in more general situations, as e.g. the Z4

orbifold, in contrast to some general wisdom. Thus one cannot any longer define a common
unification scale for all couplings. It is however possible to introduce a scale where a pair of
couplings meet. In the case of the Z4 orbifold, we determined that scale for the E8 and E6

couplings, and observed that the relative splittings of the others were of the order of 4 to 7%.
This situation has to be compared to what happens in ordinary grand unified theories where,
it is always possible to chose a scheme, namely the DR scheme, such that all couplings are
unified at some scale [38].

Despite the various effects and contributions that one can advance in order to reduce the
string unification scale, we should be aware that in the models considered, this scale generally
concerns groups that have little to do with phenomenology, and that one has somehow to
break one of these groups, say E6, down to some subgroup, eventually leading to the standard
model. In order to describe such a realistic situation in the framework of strings, it seems
difficult to avoid the introduction of Wilson lines [19]. Those will enhance the moduli space
and allow for a better exploration of the various symmetry-breaking possibilities.
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Appendix A: The Green–Schwarz term in N = 1 string ground states

We present here a discussion on the appearance of the Green–Schwarz term in N = 1 string
ground states [5] when string theory results in the dilaton frame are matched with effective
supergravity calculations in the S-frame.

We will start with the tree-level plus one-loop bosonic action of the heterotic string in a
generic N = 1 ground state, S = Stree + Sone loop, where (we set α′ = 1)

Stree =
∫
d4x
√
Ge−2Φ

(
1

2

(
R+ 4(∂Φ)2 −

1

12
H2
)
−
k

4
F 2 −K (0)

TαT β
∂Tα∂T β + · · ·

)
, (A.1)

Sone loop =
∫
d4x
√
G

(
−K (1)

TαTβ
∂Tα∂T β −

kZF

4
F 2 +

Z
FF̃

4
F F̃ +

1

2
HµXµ + · · ·

)
. (A.2)

Here we included a single gauge field, the moduli and the universal sector. As usual

Hσ =
1

3!

εµνρσ
√
G
Hµνρ , F̃ µν =

1

2!

εµνρσ
√
G
Fρσ , (A.3)

and Xµ is a vector that depends on the moduli. The coupling of the antisymmetric tensor to
the moduli that arises at one loop is a direct descendant of the anomaly-cancelling Green–
Schwarz term in ten dimensions. Going to the Einstein frame where gµν = e−2ΦGµν , and
introducing the axion by13

e−4ΦHµνρ =
εµνρσ
√
g

(∂σA+Xσ) , (A.4)

we obtain the dual action:

S̃ tree & one loop =
∫
d4x
√
g

(
1

2
R− (∂Φ)2 −

(
K

(0)

TαTβ
+ e2ΦK

(1)

TαT β

)
∂Tα∂T β

−
1

4
e4Φ(∂A+X)2 −

k

4

(
e−2Φ + ZF

)
F 2 +

1

4

(
kA+ Z

FF̃

)
F F̃

)
. (A.5)

At tree level the S field is simply S = A + ie−2Φ and the tree-level Kähler potential is
Ktree = − log ImS + K(0)(Tα, T β). At one loop the S field mixes with the moduli and is
determined by a Kähler potential of the form [5]

K tree & one loop = − log
(

ImS + V (Tα, T β)
)

+K(0)(Tα, T β) , (A.6)

13Note that the Xσ term is the one-loop correction to the tree-level definition of the axion.
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where K(0)(Tα, T β) = − log ImTα − · · ·. Compatibility of (A.6) with (A.5) implies that

S = A+ i
(
e−2Φ − V

)
, Xµ = i

(
VTα∂µTα − VT β

∂µT β

)
, K

(1)

TαTβ
= −V

TαT β
. (A.7)

Let us consider now the physical gauge coupling constant. From string theory we can
calculate the one-loop corrected ith group factor coupling to be, in the dilaton frame, (see
eqs. (2.22) and (2.26))

1

g2
i, eff

= ki e
−2〈Φ〉 +

bi

16π2
log

M2
s

µ2
+

∆i

16π2
+

bi

16π2
(2 + 2γ)

= ki ( ImS + V ) +
bi

16π2
log

M2
s

µ2
+

∆i

16π2
+

bi

16π2
(2 + 2γ) , (A.8)

where µ is the infra-red scale, ∆i are the thresholds computed in section 2 (eq. (2.26)) and
bi the full beta-function coefficients of the N = 1 model: bi =

∑
r n

r
i Ti(r) − 3T (Gi).

In the effective supergravity theory, at tree level, the gauge couplings are given by the
imaginary part of a holomorphic function fi, which in this case is fi = ki S. At one loop we
have [5, 6]

1

g2
i, eff

= ki ImS +
bi

16π2

(
log

Λ2

µ2
− log ImS

)
+ constant

+
1

16π2

(
Imf

(1)
i + ciK

(0) − 2
∑
r

Ti(r) log detZ(0)
ri

)
. (A.9)

Here ci =
∑
r n

r
i Ti(r)−T (Gi) is the tree-level (moduli-dependent) matrix that multiplies the

kinetic terms of matter in the representation r of Gi. There is a scheme-dependent constant
in (A.9), which for the DR scheme was computed in [3, 13], and turns out to be bi

16π2 (2+2γ).
The calculation in the effective field theory was done with an ultraviolet cut-off at Λ. In
[6] the cut-off was set to be the Planck scale Λ = MP , which is the natural scale from the
point of view of supergravity. It was shown in [14] that in heterotic supersymmetric string
vacua the relation of the string scale to the Planck mass does not receive corrections in
perturbation theory. Thus

MP = Ms e
−〈Φ〉 . (A.10)

However, if this relation is expressed in terms of ImS then it does receive corrections already
at one loop, since the relation of ImS and e−2Φ is modified order by order in perturbation
theory. Therefore, to first non-trivial order

M2
s

∣∣∣
one loop

=
M2

P

ImS + V
. (A.11)

Choosing Λ = MP does not affect the couplings at one loop. Nevertheless, in order to profit
from the non-renormalization theorem we can choose the ultraviolet cut-off for the effective
field theory to be defined by (A.11), which effectively resums all relevant higher-loop effects
due to the renormalization of the relation between e−2Φ and ImS. This is a slightly different
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scheme than the one adopted in [6]. It is similar to loop computations in QCD, where the
judicious choice of the relevant scale for a process resums some higher-order effects.

Comparing now (A.8) and (A.9) we obtain to next-to-leading order in ImS:

Im f
(1)
i = −ciK

(0) + 2
∑
r

Ti(r) log detZ(0)
ri

+ 16π2ki V + ∆i . (A.12)

All terms in (A.12) are independent of the S field. Moreover [6] since f (1) is holomor-
phic due to N = 1 supersymmetry, the right-hand side has to be a holomorphic function.
Thus the non-holomorphicity of the tree-level kinetic terms has to cancel the one-loop non-
holomorphicity of the couplings. This is a reflection of the cancellation of the Kähler anomaly
in the effective field theory [5].

One more comment is in order here. One-loop calculations in the effective theory repro-
duce derivatives of the function V . On the other hand, the S field is defined in terms of V
itself. A harmonic shift of V → V + h + h̄, where h is holomorphic, can be absorbed in a
holomorphic redefinition of S. Thus the coupling in the S frame is defined up to holomorphic
redefinitions. This is important in the context of the threshold corrections generated from
N = 1 sectors.

Finally, formula (A.9) refers to generic heterotic superstring vacua. If one restricts to orb-
ifold compactifications, and use the extra information they provide for the Kähler potential
[5, 6], V can be determined (up to holomorphic redefinitions):

V =
1

16π2

(
∆GS + Y

)
(A.13)

with
∆GS =

∑
α

δGSα (log ImTα + log ImUα) (A.14)

the advertised Green–Schwarz term, where the sum extends over the moduli that are not
fixed by the orbifold action, and Y is the universal threshold correction appearing in (1.3)
and (2.26). Both Y and ∆GS are universal in that they do not depend on the gauge group
factor; however their origin is respectively stringy and field-theoretical, and they should not
be confused. The numerical constants δGSα can be calculated from the spectrum of the model.
An explicit calculation of these quantities for various orbifold models was presented in [5, 6].
For N = 2 models we have δαGS = 0 and thus

V N=2 =
1

16π2
Y
(
T, U, T , U

)
(A.15)

with Y
(
T, U, T, U

)
given in (3.22). In situations with N = 1 supersymmetry, δγGS can be

evaluated for specific models [6]. They turn out to vanish for Z2 × Z2 orbifolds, while for
the symmetric Z3 orbifold we have δ1

GS = δ2
GS = δ3

GS = 30:

∆GS = 30
3∑

α=1

log ImTα . (A.16)
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In the case of the symmetric Z4 orbifold, the result is δ3
GS = 0 for the N = 2 plane that is

left unrotated by the orbifold twist, and δ1
GS = δ2

GS = 30 for the other two planes. Thus

∆GS = 30
2∑

α=1

log ImTα . (A.17)

Our last comment concerns the issue of unification. In section 2, working in the dilaton
frame, we introduced a renormalized coupling which plays the role of unification coupling,
when unification exists. This coupling is related to gstring = exp〈Φ〉 as shown in eq. (2.28).
Moduli dependence enters through Y and propagates to the unification scale when Ms is
expressed in terms of MP (see eq. (2.29)). In the S-frame, the same renormalized coupling
can be introduced, however expressed in terms of ImS:

1

g2
renorm

∣∣∣∣∣
one loop

= ImS + V −
Y

16π2

= ImS +
∆GS

16π2
. (A.18)

All moduli dependence is now contained in ∆GS . However, if one uses eq. (A.18) to recast
(A.11) in terms of grenorm, we obtain (2.29) as in the dilaton frame, and the moduli depen-
dence appears again through Y . Therefore, eq. (2.29) do not depend on the frame, and so
are the conclusions about the unification scale, which turns out to be affected by Y but is
not sensitive to ∆GS .

Appendix B: Explicit formulas for the universal thresholds and asymptotics

The purpose of this appendix is to evaluate, in terms of a multiple series expansion, the
universal thresholds for N = 2 models that are toroidal compactifications of N = 1 six-
dimensional heterotic vacua, and analyse their asymptotic behaviours. Our starting point is
eq. (3.23). By using (3.15), we can recast expression (3.23) as follows:

Y
(
T, U, T, U

)
=

1

12

∫
F

d2τ

Im τ

(
Γ2,2

(
T, U, T, U

) (
E2 −

3

π Im τ

)
E4E6

η̄24
+ 264

)

−22

(
log

(
|η(T )|4|η(U)|4 ImT ImU

)
+ log

8π e1−γ

√
27

)
+

1

3
log |j(T )− j(U)| . (B.1)

The remaining integral in (B.1) can be evaluated using the results of [17] with 14:

I
(
T, U, T, U

)
=

1

12

∫
F

d2τ

Im τ

(
Γ2,2

(
T, U, T, U

)(
E2 −

3

π Im τ

)
E4E6

η̄24
+ 264

)

=
1

3
Re

(
− 24

∑
k>0

(
11Li1

(
e2πikT

)
−

30

π ImT ImU
P(kT )

)
14Here we use the convention Θ(0) = 1

2 .
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− 24
∑
`>0

(
11Li1

(
e2πi`U

)
−

30

π ImT ImU
P(`U)

)

+
∑

k>0, `>0

(
c̃(k`)Li1

(
e2πi(kT+`U)

)
−

3 c(k`)

π ImT ImU
P(kT + `U)

)

+Li1

(
e2πi( ReT−ReU+i| ImT− ImU |)

)
−

3

π ImT ImU
P
(

ReT − ReU + i| ImT − ImU |
))

+
60 ζ(3)

π2 ImT ImU
+ 22

(
log( ImT ImU) + log

8π e1−γ

√
27

)

+

(
4π

3

( ImU)2

ImT
−

22π

3
ImU − 4π ImT

)
Θ( ImT − ImU)

+

(
4π

3

( ImT )2

ImU
−

22π

3
ImT − 4π ImU

)
Θ( ImU − ImT ) . (B.2)

Here c(n) and c̃(n) are the coefficients of the Laurent expansions:

E4 E6

η24
=

∞∑
n=−1

c(n) qn =
1

q
− 240− 141444 q − 8529280 q2 + · · · (B.3)

and
E2E4E6

η24
=

∞∑
n=−1

c̃(n) qn =
1

q
− 264− 135756 q − 5117440 q2 + · · · . (B.4)

The function P(x) is defined by

P(x) = ImxLi2
(
e2πix

)
+

1

2π
Li3

(
e2πix

)
, (B.5)

and Lij are the polylogarithms

Li1(x) =
∞∑
j=1

xj

j
= − log(1− x) , (B.6)

Li2(x) =
∞∑
j=1

xj

j2
, (B.7)

Li3(x) =
∞∑
j=1

xj

j3
. (B.8)

The above integral I is logarithmically divergent when T → U ; the singularity arises from the

term 1
3

ReLi1

(
e2πi(Re T−ReU+i| ImT− ImU |)

)
. This very divergence cancels the one appearing

in Y through 1
3

log |j(T )− j(U)|. Indeed we can use the product representation

j(T )− j(U) = e−2πiT
∏

k>0, `>−2

(
1− e2πi(kT+`U)

)ĉ(k`)
, (B.9)
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where ĉ(n) are defined by15

j(q)− 744 =
∞∑

n=−1

ĉ(n) qn =
1

q
+ 196884 q + 21493760 q2 + · · · . (B.10)

Putting everything together we obtain:

Y = Re
∑

k>0, `>0

(
c̃(k`) − ĉ(k`)

3
Li1

(
e2πi(kT+`U)

)
−

c(k`)

π ImT ImU
P(kT + `U)

)

+
60

π2 ImT ImU

(
ζ(3) + 4πRe

∑
k>0

P(kT ) + 4πRe
∑
`>0

P(`U)

)

−
1

π ImT ImU
ReP

(
ReT − ReU + i| ImT − ImU |

)
+

(
4π

3

( ImU)2

ImT
+ 4π ImT

)
Θ( ImT − ImU)

+

(
4π

3

( ImT )2

ImU
+ 4π ImU

)
Θ( ImU − ImT ) . (B.11)

The above expression enables us to check that Y is finite and continuous at T = U for
finite T and U . Concerning ∂T ∂T Y , it is obvious that potential singularities may arise from

the term −1
π ImT ImU

ReP
(

ReT − ReU + i| ImT − ImU |
)

as well as from the Θ-functions.

The latter turn out to give regular terms while the former leads to (3.33).

Finally, by using (B.11), various asymptotic behaviours can be studied. We restrict again
to the case where ReT = ReU = 0. The limit R1 = R2 = R→∞ was derived in [13] with
the result:

Y (R) = 4πR2 +
60κ

πR2
+O

(
e−πR

2
)
, (B.12)

where

κ =
2

π2
ζ(4) +

∑
j>0

(
cothπj

π

1

j3
+

1

sinh2 πj

1

j2

)
≈ 0.61 . (B.13)

Following similar steps one can derive the asymptotic expansions for ImT, ImU →∞ with

the ratio kept fixed. This amounts to taking R2 → ∞, while R1 =
√

ImT/ ImU is finite.
We obtain:

Y (R1, R2) =



4π
3
R2

(
1
R3

1
+ 3R1

)
Θ(R1 − 1) + 4π

3
R2

(
R3

1 + 3
R1

)
Θ(1−R1)

+ 60
π2R2

2
ζ(3) +O

(
e−πR

2
2

)
if R1 6= 1

16π
3
R2 + 119

2π2R2
2
ζ(3) +O

(
e−πR

2
2

)
if R1 = 1 ,

(B.14)

from which it appears that Y is not continuous at T = U when the radii become large.
Similar results can be reached for R1 → ∞, R2 finite; then the discontinuity appears at
R2 = 1, corresponding to T = 1

U
.

15We use the notation j(τ) or j(q) with q = e2πiτ .
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Figure 1: Contour plots of the universal thresholds Y (R1, R2) as a function of the internal
radii R1 and R2.

R1

R2

30

50

70

90

130

150

We have also calculated Y numerically. One can verify that the ReT , ReU dependence
is very weak and leads to small oscillations of the order < 2% around the ReT = ReU = 0
values. The results for ReT = ReU = 0 are presented in figure 1. As expected, there is
another minimum at the other self-dual point T = U = ρ. It has the same depth as the one
at T = U = i discussed above, to the accuracy of its numerical evaluation. We come to the
conclusion that Y (R1, R2) ≥ Y (1, 1) where Y (1, 1) ≈ 24.4 is the value of the minimum at
the point R1 = R2 = 1.
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