4 research outputs found
Texture vs morphology in ZnO nano-rods: On the x-ray diffraction characterization of electrochemically grown samples
Texture characterization in thin films from standard powder x-ray diffraction (XRD) rely on the comparison between observed peak relative intensities with those of powder diffraction standards of the same compound, trough the so-called texture coefficient (TC). While these methods apply for polycrystalline materials with isotropic grains, they are less accurate-and even wrong-for anisotropic materials like ZnO oriented single-crystal nano-rods, which would require the use of dedicated XRD texture setups. By using simple geometrical considerations, we succeed in discriminating between texture and morphology contributions to the observed intensity ratios in powder diffraction patterns. On this basis, we developed a method that provides a quantitative determination of both texture (polar distribution) and morphology (aspect ratio of nano-rods), using simple x-ray powder diffraction. The method is illustrated on a typical sample from a series of Zinc oxide (ZnO) nano-rod arrays grown onto a gold thin film sputtered onto a F:SnO2-coated glass substrate (FTO) by using cathodic electro-deposition. In order to check the consistency of our method, we confronted our findings with scanning electron microscope (SEM) images, grazing incidence diffraction (GID), and XRD pole-figures of the same sample. Nevertheless, the proposed method is self-consistent and only requires the use of a standard powder diffractometer, nowadays available in most solid-state laboratories. (C) 2011 American Institute of Physics. [doi:10.1063/1.3669026
Comparative study on the properties of ZnO nanowires and nanocrystalline thin films
Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq)The microstructural, morphological, optical and water-adsorption properties of nanocrystalline ZnO thin films and ZnO nanowires were studied and compared. The ZnO thin films were obtained by a sol-gel process, while the ZnO nanowires were electrochemically grown onto a ZnO sol-gel spin-coated seed layer. Thin films and nanowire samples were deposited onto crystalline quartz substrates covered by an Au electrode, able to be used in a quartz crystal microbalance. X-ray diffraction measurements reveal in both cases a typical diffraction pattern of ZnO wurtzite structure. Scanning electron microscopic images of nanowire samples show the presence of nanowires with hexagonal sections, with diameters ranging from 30 to 90 nm. Optical characterization reveals a bandgap energy of 3.29 eV for the nanowires and 3.35 eV for the thin films. A quartz crystal microbalance placed in a vacuum chamber was used to quantify the amount and kinetics of water adsorption onto the samples. Nanowire samples, which have higher surface areas than the thin films, adsorb significantly more water. (C) 2012 Elsevier B.V. All rights reserved.2135964Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq)CLAFSwedish Government Strategic Research Area Grant in Materials ScienceCITEDEFCONICETPEDECIBA-FisicaANII (Agencia Nacional de Investigacion e Innovacion)Universidad de la Republica, in Montevideo, UruguayConselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq)CNPq [490580/2008-4
Comparative study on the properties of ZnO nanowires and nanocrystalline thin films
The microstructural, morphological, optical and water-adsorption properties of nanocrystalline ZnO thin films and ZnO nanowires were studied and compared. The ZnO thin films were obtained by a sol–gel process, while the ZnO nanowires were electrochemically grown onto a ZnO sol–gel spin-coated seed layer. Thin films and nanowire samples were deposited onto crystalline quartz substrates covered by an Au electrode, able to be used in a quartz crystal microbalance. X-ray diffraction measurements reveal in both cases a typical diffraction pattern of ZnO wurtzite structure. Scanning electron microscopic images of nanowire samples show the presence of nanowires with hexagonal sections, with diameters ranging from 30 to 90 nm. Optical characterization reveals a bandgap energy of 3.29 eV for the nanowires and 3.35 eV for the thin films. A quartz crystal microbalance placed in a vacuum chamber was used to quantify the amount and kinetics of water adsorption onto the samples. Nanowire samples, which have higher surface areas than the thin films, adsorb significantly more water