7 research outputs found

    Photobiont Relationships and Phylogenetic History of Dermatocarpon luridum var. luridum and Related Dermatocarpon Species

    Get PDF
    Members of the genus Dermatocarpon are widespread throughout the Northern Hemisphere along the edge of lakes, rivers and streams, and are subject to abiotic conditions reflecting both aquatic and terrestrial environments. Little is known about the evolutionary relationships within the genus and between continents. Investigation of the photobiont(s) associated with sub-aquatic and terrestrial Dermatocarpon species may reveal habitat requirements of the photobiont and the ability for fungal species to share the same photobiont species under different habitat conditions. The focus of our study was to determine the relationship between Canadian and Austrian Dermatocarpon luridum var. luridum along with three additional sub-aquatic Dermatocarpon species, and to determine the species of photobionts that associate with D. luridum var. luridum. Culture experiments were performed to identify the photobionts. In addition, the question of the algal sharing potential regarding different species of Dermatocarpon was addressed. Specimens were collected from four lakes in northwestern Manitoba, Canada and three streams in Austria. Three Canadian and four Austrian thalli of D. luridum var. luridum were selected for algal culturing. The nuclear Internal Transcribed Spacer (ITS) rDNA gene of the fungal partner along with the algal ITS rDNA gene was sequenced to confirm the identity of the lichen/photobiont and afterwards the same data sets were used in phylogenetic analyses to assess algal sharing. The green algal photobiont was identified as Diplosphaera chodatii (Trebouxiophyceae). The phylogenetic analyses of Canadian and Austrian D. luridum var. luridum revealed that ITS sequences are identical despite the vast geographic distance. Phylogenetic placement of D. luridum var. decipiens and D. arnoldianum suggested that a re-examination of the species status might be necessary. This study concluded that additional photobiont culture experiments should be conducted to answer the question of whether multiple photobionts are present within the genus Dermatocarpon

    Culture studies on the mycobiont isolated from Parmotrema reticulatum (Taylor) Choisy: metabolite production under different conditions

    Get PDF
    A strain of the lichen mycobiont isolated from Parmotrema reticulatum was cultured axenically on different media. The morphology, anatomy, growth of the colonies, and metabolite production were studied. The iisolated fungal colonies developed well and showed aremarkable morphogenetic capacity on most of the assayedsolid media, e.g., malt extract 2%-yeast extract 0.2% (MEYE), malt extract 1%-yeast extract 0.4%-sucrose 10% (MY10), and the original Lilly & Barnett medium (LB). Theidentity of the isolated fungus was confirmed by its ITS rDNA-sequence. Atranorin, the major cortical lichen depside,was produced when the colonies were grown over 5<and 10 months on solid LB medium, combined with a dessication treatment. Atranorin was identified by matchingof UV spectra obtained from HPLC running and a reference substance in a spectrum library. Colonies grown on MEYE and MY10 with a dessication treatment did not produce any lichen secondary metabolite. Mycobionts grown for 5 months on solid MEYE without a dessication treatment produced triacylglycerides as the major metabolites, and the fatty acids were characterized as their methyl esters. Analysis by TLC and HPLC-DAD of extracts of colonies grown on LB and without dessication revealed that the typical secondary compounds of the natural lichen were not produced. The major metabolites of the natural lichen thallus were identified by chromatographic and spectroscopic methods.Fil: Fazio, Alejandra Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Bertoni, María D.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Adler, Monica Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Ruiz, Laura Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Rosso, María L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; ArgentinaFil: Muggia, Lucia. Karl Franzens University of Graz. Institut für Pflanzenwissenschaften; AustriaFil: Hager, Armin. University of Salzburg. Department of Organismic Biology; AustriaFil: Stocker Wörgötter, Elfie. University of Salzburg. Department of Organismic Biology; AustriaFil: Maier, Marta Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; Argentin
    corecore