11 research outputs found
Molteplici funzioni della proteina âFragile X mental retardation Proteinâ nella regolazione dellâespressione genica
La proteina FMRP (Fragile X Mental Retardation Protein) Ăš la causa principale della Sindrome
dellâX Fragile, la piĂč comune forma di ritardo mentale ereditario. FMRP Ăš una proteina che lega gli
RNA e puĂČ legare direttamente gli mRNA attraverso elementi o sequenze in cis (AU-rich
sequences, G-quartet elements, kissing-complex) o indirettamente attraverso piccoli RNA non
codificanti come BC1 o i microRNA. FMRP regola il metabolismo degli mRNA ed ha un ruolo
importante nella traduzione di un messaggero e nella localizzazione di un mRNA ai dendriti.
Durante il mio dottorato, ho studiato i possibili e molteplici meccanismi di FMRP nel regolare
lâespressione genica.
Nella prima parte della tesi, ho descritto un terza e nuova funzione regolatoria di FMRP nel
controllare la stabilitĂ di un mRNA. In topo, ho osservato che FMRP lega, in vivo, lâmRNA
codificante per PSD-95, una molecola chiave che regola lâapprendimento e lâefficienza del segnale
sinaptico. Lâinterazione si verifica nella regione 3â non tradotta dellâmRNA di PSD-95 e permette
dâincrementare la stabilitĂ del messaggero. Inoltre, la stabilitĂ Ăš regolata in seguito allâattivazione
dei recettori metabotropici del glutammato. Il controllo nella stabilitĂ del mRNA di PSD-95 si
verifica solo nellâippocampo, questo risultato mostra per la prima volta che FMRP ha uno ruolo
regolatorio in una specifica regione del cervello. Sebbene, ho osservato che lâmRNA di PSD-95 Ăš
sinapticamente localizzato in vivo, la localizzazione si verifica indipendentemente da FMRP.
Attraverso questo studio, ho osservato che la regolazione della stabilitĂ di un mRNA puĂČ
contribuire a deficit cognitivi nei soggetti affetti dalla Sindrome dellâX Fragile.
Nella seconda parte, ho descritto il possibile ruolo di FMRP nel pathway dei microRNA. I miRNA
regolano lâespressione genica ed FMRP Ăš stata trovata associata al complesso RISC. Tuttavia, la
presenza e la funzione di questo complesso non Ăš stata ancora descritta nel cervello. Nel mio
laboratorio, prime evidenze sperimentali hanno osservato che FMRP non regola la maturazione e la
distribuzione polisomale dei miRNA nel cervello. In seguito, ho eseguito uno studio traduzionale in
cellule neuronali WT e Fmr1 KO trasfettate con un gene reporter per la EGFP che possiede dei siti
di legame per let7c. Lâanalisi ha mostrato che FMRP non Ăš coinvolto nella inibizione
dellâespressione genica mediata da FMRP. Unâanalisi biochimica mi hanno permesso di osservare
che FMRP immunoprecipita con Ago2 in cervelli murini, ma i miRNA non sono presenti nello
stesso complesso. Questo studio ha mostrato la presenza di un nuovo complesso dove FMRP e
Ago2 potrebbero regolare specifici messaggeri con un pathway indipendente dai microRNA.The Fragile X Mental Retardation Protein (FMRP) is the main cause of the Fragile X Syndrome, the
most common form of inherited mental retardation. FMRP is an RNA binding protein and it may
bind mRNAs directly via cis elements or sequences (AU-rich sequences, G-quartet elements,
kissing-complex) or indirectly using small non coding RNAs such as BC1 or microRNAs. FMRP
regulates mRNA metabolism and it has important roles in mRNA translation and may be
fundamental in mRNA localization to dendrites.
During my PhD, I have studied the possible multiple mechanisms and functions of FMRP in the
regulation of gene expression.
In the first part of my thesis I have reported a third cytoplasmic regulatory function for FMRP:
control of mRNA stability. In mice, I have found that FMRP binds, in vivo, the mRNA encoding
PSD-95, a key molecule that regulates neuronal synaptic signaling and learning. This interaction
occurs through the 3âuntranslated region of the PSD-95 (also known as Dlg4) mRNA, increasing
message stability. Moreover, stabilization is further increased by mGluR activation. The control of
PSD-95 mRNA stability occours only in the hippocampus, this result shows for the first time that
FMRP has a specific brain-region role. Although, I have also found that the PSD-95 mRNA is
synaptically localized in vivo, localization occurs independently of FMRP. Through my functional
analysis of this FMRP target I provide evidence that dysregulation of mRNA stability may
contribute to the cognitive impairments in individuals with FXS.
The second part describes the possible role of FMRP in the miRNAs pathway. miRNAs regulate the
gene expression and FMRP is associated with component of the RISC complex. Yet, the presence
and the function of the putative complex is unknown in brain. In my lab, previous evidences have
shown that FMRP does not regulate miRNAs maturation/stability and the polysome/mRNP
distribution of miRNAs in brain.
I have performed a translational assay in both WT and FMR1 KO neuronal cells following
transfection of a EGFP construct harbouring a synthetic Responsive Element for let7c. The analysis
has shown that FMRP is not involved in let7c mediated inhibition of gene expression.
I have found that FMRP immunoprecipitates with Ago2 in mice brain but miRNAs are not present
in the same complex. The study has shown the presence of a complex where FMRP and Ago2 could
regulate specific mRNAs with an indipendent miRNAs pathway
NoRC Recruitment by H2A.X Deposition at rRNA Gene Promoter Limits Embryonic Stem Cell Proliferation
Summary: Embryonic stem cells (ESCs) display an abbreviated cell cycle, resulting in a short doubling time and rapid proliferation. The histone variant H2A.X is critical for proliferation of stem cells, although mechanistic insights have remained obscure. Here, we show that H2A.X defines the rate of mouse ESC proliferation independently of the DNA damage response pathway, and it associates with three major chromatin-modifying complexes. Our functional and biochemical analyses demonstrate that H2A.X-associated factors mediate the H2A.X-dependent effect on ESC proliferation and involve the nucleolar remodeling complex (NoRC). A specific H2A.X deposition at rDNA promoters determines the chromatin recruitment of the NoRC, histone modifications, the rRNA transcription, and the rate of proliferation. Collectively, our results suggest that NoRC assembly by H2A.X deposition at rRNA promoters silences transcription, and this represents an important regulatory component for ESC proliferation. : Histone variant H2A.X defines the rate of embryonic stem cell proliferation. Eleuteri et al. identify H2A.X-interacting proteins, and they show that H2A.X deposition at rDNA promoters assembles the NoRC, which represses rRNA transcription and determines the rate of self-renewal. Keywords: ribosomal biogenesis, rRNA, rDNA, stem cells, TIP5, SNF2H, SPT16, BRG1, H2A.X, G1, cell cycle, cell cycle arrest, proliferatio
A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability
Fragile X syndrome ( FXS) results from the loss of the fragile X mental retardation protein ( FMRP), an RNA- binding protein that regulates a variety of cytoplasmic mRNAs. FMRP regulates mRNA translation and may be important in mRNA localization to dendrites. We report a third cytoplasmic regulatory function for FMRP: control of mRNA stability. In mice, we found that FMRP binds, in vivo, the mRNA encoding PSD- 95, a key molecule that regulates neuronal synaptic signaling and learning. This interaction occurs through the 3' untranslated region of the PSD- 95 ( also known as Dlg4) mRNA, increasing message stability. Moreover, stabilization is further increased by mGluR activation. Although we also found that the PSD- 95 mRNA is synaptically localized in vivo, localization occurs independently of FMRP. Through our functional analysis of this FMRP target we provide evidence that dysregulation of mRNA stability may contribute to the cognitive impairments in individuals with FXS.status: publishe
The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP
Strong evidence indicates that regulated mRNA translation in neuronal dendrites underlies synaptic plasticity and brain development. The fragile X mental retardation protein (FMRP) is involved in this process; here, we show that it acts by inhibiting translation initiation. A binding partner of FMRP, CYFIP1/Sra1, directly binds the translation initiation factor eIF4E through a domain that is structurally related to those present in 4E-BP translational inhibitors. Brain cytoplasmic RNA 1 (BC1), another FMRP binding partner, increases the affinity of FMRP for the CYFIP1-eIF4E complex in the brain. Levels of proteins encoded by known FMRP target mRNAs are increased upon reduction of CYFIP1 in neurons. Translational repression is regulated in an activity-dependent manner because BDNF or DHPG stimulation of neurons causes CYFIP1 to dissociate from eIF4E at synapses, thereby resulting in protein synthesis. Thus, the translational repression activity of FMRP in the brain is mediated, at least in part, by CYFIP1.status: publishe
A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability
Fragile X syndrome ( FXS) results from the loss of the fragile X mental retardation protein ( FMRP), an RNA- binding protein that regulates a variety of cytoplasmic mRNAs. FMRP regulates mRNA translation and may be important in mRNA localization to dendrites. We report a third cytoplasmic regulatory function for FMRP: control of mRNA stability. In mice, we found that FMRP binds, in vivo, the mRNA encoding PSD- 95, a key molecule that regulates neuronal synaptic signaling and learning. This interaction occurs through the 3' untranslated region of the PSD- 95 ( also known as Dlg4) mRNA, increasing message stability. Moreover, stabilization is further increased by mGluR activation. Although we also found that the PSD- 95 mRNA is synaptically localized in vivo, localization occurs independently of FMRP. Through our functional analysis of this FMRP target we provide evidence that dysregulation of mRNA stability may contribute to the cognitive impairments in individuals with FXS
Recommended from our members