110 research outputs found

    Use of the MMPI-3 with Catholic and Episcopal Seminary and Religious Life Applicants

    Get PDF
    Psychological evaluations and testing using the Minnesota Multiphasic Personality Inventory (MMPI) among other instruments have been used to screen clerical and religious life applicants for decades. While much research has been conducted and published regarding these evaluations, the newer MMPI-3 has not been examined among this population. This study reviewed MMPI-3 results from 18 applicants to seminary and religious life from the Roman Catholic and Episcopal faith traditions to determine if the participants are generally psychological healthy and if they have any consistent elevations in their MMPI-3 testing scores. Additionally, we examined MMPI-3 differences among Catholics versus Episcopal applicants. Our preliminary results using a small sample suggest that applicants to seminary and religious life are generally psychologically healthy but tend to be defensive, presenting themselves in a favorable and virtuous manner. Additionally, Catholics tend to score higher on inconsistent responses but lower on psychoticism than Episcopalians. Further research should use larger and more diverse sample sizes to better understand how the MMPI-3 performs among this population

    Unilateral deafness in children affects development of multi-modal modulation and default mode networks

    Get PDF
    Monaural auditory input due to congenital or acquired unilateral hearing loss (UHL) may have neurobiological effects on the developing brain. Using functional magnetic resonance imaging (fMRI), we investigated the effect of UHL on the development of functional brain networks used for cross-modal processing. Children ages 7–12 with moderate or greater unilateral hearing loss of sensorineural origin (UHL-SN; N = 21) and normal-hearing controls (N = 23) performed an fMRI-compatible adaptation of the Token Test involving listening to a sentence such as “touched the small green circle and the large blue square” and simultaneously viewing an arrow touching colored shapes on a video. Children with right or severe-to-profound UHL-SN displayed smaller activation in a region encompassing the right inferior temporal, middle temporal, and middle occipital gyrus (BA 19/37/39), evidencing differences due to monaural hearing in cross-modal modulation of the visual processing pathway. Children with UHL-SN displayed increased activation in the left posterior superior temporal gyrus, likely the result either of more effortful low-level processing of auditory stimuli or differences in cross-modal modulation of the auditory processing pathway. Additionally, children with UHL-SN displayed reduced deactivation of anterior and posterior regions of the default mode network. Results suggest that monaural hearing affects the development of brain networks related to cross-modal sensory processing and the regulation of the default network during processing of spoken language

    Involvement of the right hemisphere in reading comprehension: a DTI study

    Get PDF
    The Simple View of reading emphasizes the critical role of two factors in normal reading skills: word recognition and reading comprehension. The current study aims to identify the anatomical support for aspects of reading performance that fall within these two components. Fractional anisotropy (FA) values were obtained from Diffusion Tensor images in twenty-one typical adolescents and young adults using the Tract Based Spatial Statistics (TBSS) method. We focused on the Arcuate Fasciculus (AF) and Inferior Longitudinal Fasciculus (ILF) as fiber tracts that connect regions already implicated in the distributed cortical network for reading. Our results demonstrate dissociation between word-level and narrative-level reading skills: the FA values for both left and right ILF were correlated with measures of word reading, while only the left ILF correlated with reading comprehension scores. FA in the AF, however, correlated only with reading comprehension scores, bilaterally. Correlations with the right AF were particularly robust, emphasizing the contribution of the right hemisphere, especially the frontal lobe, to reading comprehension performance on the particular passage comprehension test used in this study. The anatomical dissociation between these reading skills is supported by the Simple View theory and may shed light on why these two skills dissociate in those with reading disorders

    Neural Substrates of Attentive Listening Assessed with a Novel Auditory Stroop Task

    Get PDF
    A common explanation for the interference effect in the classic visual Stroop test is that reading a word (the more automatic semantic response) must be suppressed in favor of naming the text color (the slower sensory response). Neuroimaging studies also consistently report anterior cingulate/medial frontal, lateral prefrontal, and anterior insular structures as key components of a network for Stroop-conflict processing. It remains unclear, however, whether automatic processing of semantic information can explain the interference effect in other variants of the Stroop test. It also is not known if these frontal regions serve a specific role in visual Stroop conflict, or instead play a more universal role as components of a more generalized, supramodal executive-control network for conflict processing. To address these questions, we developed a novel auditory Stroop test in which the relative dominance of semantic and sensory feature processing is reversed. Listeners were asked to focus either on voice gender (a more automatic sensory discrimination task) or on the gender meaning of the word (a less automatic semantic task) while ignoring the conflicting stimulus feature. An auditory Stroop effect was observed when voice features replaced semantic content as the “to-be-ignored” component of the incongruent stimulus. Also, in sharp contrast to previous Stroop studies, neural responses to incongruent stimuli studied with functional magnetic resonance imaging revealed greater recruitment of conflict loci when selective attention was focused on gender meaning (semantic task) over voice gender (sensory task). Furthermore, in contrast to earlier Stroop studies that implicated dorsomedial cortex in visual conflict processing, interference-related activation in both of our auditory tasks was localized ventrally in medial frontal areas, suggesting a dorsal-to-ventral separation of function in medial frontal cortex that is sensitive to stimulus context

    Individual Versus Small Group Treatment of Morphological Errors for Children With Developmental Language Disorder

    Get PDF
    Purpose: This study examines the effects of enhanced conversational recast for treating morphological errors in preschoolers with developmental language disorder. The study assesses the effectiveness of this treatment in an individual or group (n = 2) setting and the possible benefits of exposing a child to his or her partner's treatment target in addition to his or her own. Method: Twenty children were assigned to either an individual (n = 10) or group (n = 10, 2 per group) condition. Each child received treatment for 1 morpheme (the target morpheme) for approximately 5 weeks. Children in the group condition had a different target from their treatment partner. Pretreatment and end treatment probes were used to compare correct usage of the target morpheme and a control morpheme. For children in the group condition, the correct usage of their treatment partner's target morpheme was also examined. Results: Significant treatment effects occurred for both treatment conditions only for morphemes treated directly (target morpheme). There was no statistically significant difference between the treatment conditions at the end of treatment or at follow-up. Children receiving group treatment did not demonstrate significant gains in producing their partner's target despite hearing the target modeled during treatment. Conclusions: This study provides the evidence base for enhanced conversational recast treatment in a small group setting, a treatment used frequently in school settings. Results indicate the importance of either attention to the recast or expressive practice (or both) to produce gains with this treatment.acceptedVersio

    A Linear Structural Equation Model for Covert Verb Generation Based on Independent Component Analysis of fMRI Data from Children and Adolescents

    Get PDF
    Human language is a complex and protean cognitive ability. Young children, following well defined developmental patterns learn language rapidly and effortlessly producing full sentences by the age of 3 years. However, the language circuitry continues to undergo significant neuroplastic changes extending well into teenage years. Evidence suggests that the developing brain adheres to two rudimentary principles of functional organization: functional integration and functional specialization. At a neurobiological level, this distinction can be identified with progressive specialization or focalization reflecting consolidation and synaptic reinforcement of a network (Lenneberg, 1967; Muller et al., 1998; Berl et al., 2006). In this paper, we used group independent component analysis and linear structural equation modeling (McIntosh and Gonzalez-Lima, 1994; Karunanayaka et al., 2007) to tease out the developmental trajectories of the language circuitry based on fMRI data from 336 children ages 5–18 years performing a blocked, covert verb generation task. The results are analyzed and presented in the framework of theoretical models for neurocognitive brain development. This study highlights the advantages of combining both modular and connectionist approaches to cognitive functions; from a methodological perspective, it demonstrates the feasibility of combining data-driven and hypothesis driven techniques to investigate the developmental shifts in the semantic network

    Evidence that neurovascular coupling underlying the BOLD effect increases with age during childhood

    Full text link
    Functional MRI using blood–oxygen‐level‐dependent (BOLD) imaging has provided unprecedented insights into the maturation of the human brain. Task‐based fMRI studies have shown BOLD signal increases with age during development (ages 5–18) for many cognitive domains such as language and executive function, while functional connectivity (resting‐state) fMRI studies investigating regionally synchronous BOLD fluctuations have revealed a developing functional organization of the brain from a local into a more distributed architecture. However, interpretation of these results is confounded by the fact that the BOLD signal is directly related to blood oxygenation driven by changes in blood flow and only indirectly related to neuronal activity, and may thus be affected by changing neuronal–vascular coupling. BOLD signal and cerebral blood flow (CBF) were measured simultaneously in a cohort of 113 typically developing awake participants ages 3–18 performing a narrative comprehension task. Using a novel voxelwise wild bootstrap analysis technique, an increased ratio of BOLD signal to relative CBF signal change with age (indicative of increased neuronal–vascular coupling) was seen in the middle temporal gyri and the left inferior frontal gyrus. Additionally, evidence of decreased relative oxygen metabolism (indicative of decreased neuronal activity) with age was found in the same regions. These findings raise concern that results of developmental BOLD studies cannot be unambiguously attributed to neuronal activity. Astrocytes and astrocytic processes may significantly affect the maturing functional architecture of the brain, consistent with recent research demonstrating a key role for astrocytes in mediating increased CBF following neuronal activity and for astrocyte processes in modulating synaptic connectivity. Hum Brain Mapp, 36:1–15, 2015 . © 2014 Wiley Periodicals, Inc .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110113/1/hbm22608.pd
    • 

    corecore