17 research outputs found

    Proteomic fingerprinting facilitates biodiversity assessments in understudied ecosystems: A case study on integrated taxonomy of deep sea copepods

    Get PDF
    Accurate and reliable biodiversity estimates of marine zooplankton are a prerequisite to understand how changes in diversity can affect whole ecosystems. Species identification in the deep sea is significantly impeded by high numbers of new species and decreasing numbers of taxonomic experts, hampering any assessment of biodiversity. We used in parallel morphological, genetic, and proteomic characteristics of specimens of calanoid copepods from the abyssal South Atlantic to test if proteomic fingerprinting can accelerate estimating biodiversity. We cross-validated the respective molecular discrimination methods with morphological identifications to establish COI and proteomic reference libraries, as they are a pre-requisite to assign taxonomic information to the identified molecular species clusters. Due to the high number of new species only 37% of the individuals could be assigned to species or genus level morphologically. COI sequencing was successful for 70% of the specimens analysed, while proteomic fingerprinting was successful for all specimens examined. Predicted species richness based on morphological and molecular methods was 42 morphospecies, 56 molecular operational taxonomic units (MOTUs) and 79 proteomic operational taxonomic units (POTUs), respectively. Species diversity was predicted based on proteomic profiles using hierarchical cluster analysis followed by application of the variance ratio criterion for identification of species clusters. It was comparable to species diversity calculated based on COI sequence distances. Less than 7% of specimens were misidentified by proteomic profiles when compared with COI derived MOTUs, indicating that unsupervised machine learning using solely proteomic data could be used for quickly assessing species diversity

    Impact of AKT1 on cell invasion and radiosensitivity in a triple negative breast cancer cell line developing brain metastasis

    Get PDF
    Introduction: The PI3K/AKT pathway is activated in 43-70% of breast cancer (BC)-patients and promotes the metastatic potential of BC cells by increasing cell proliferation, invasion and radioresistance. Therefore, AKT1-inhibition in combination with radiotherapy might be an effective treatment option for triple-negative breast cancer (TNBC)-patients with brain metastases. Methods: The impact of AKT1-knockout (AKT1_KO) and AKT-inhibition using Ipatasertib on MDA-MB-231 BR cells was assessed using in vitro cell proliferation and migration assays. AKT1-knockout in MDA-MB-231BR cells was performed using CRISPR/Cas9. The effect of AKT1-knockout on radiosensitivity of MDA-MB-231BR cell lines was determined via colony formation assays after cell irradiation. To detect genomic variants in AKT1_KO MDA-MB-231BR cells, whole-genome sequencing (WGS) was performed. Results: Pharmacological inhibition of AKT with the pan-AKT inhibitor Ipatasertib led to a significant reduction of cell viability but did not impact cell migration. Moreover, only MDA-MB-231BR cells were sensitized following Ipatasertib-treatment. Furthermore, specific AKT1-knockout in MDA-MB-231BR showed reduced cell viability in comparison to control cells, with significant effect in one of two analyzed clones. Unexpectedly, AKT1 knockout led to increased cell migration and clonogenic potential in both AKT1_KO clones. RNAseq-analysis revealed the deregulation of CTSO, CYBB, GPR68, CEBPA, ID1, ID4, METTL15, PBX1 and PTGFRN leading to the increased cell migration, higher clonogenic survival and decreased radiosensitivity as a consequence of the AKT1 knockout in MDA-MB-231BR. Discussion; Collectively, our results demonstrate that Ipatasertib leads to radiosensitization and reduced cell proliferation of MDA-MB-231BR. AKT1-inhibition showed altered gene expression profile leading to modified cell migration, clonogenic survival and radioresistance in MDA-MB-231BR. We conclude, that AKT1-inhibition in combination with radiotherapy contribute to novel treatment strategies for breast cancer brain metastases

    Autonomic modulation and antiarrhythmic therapy in a model of long QT syndrome type 3

    Get PDF
    AIMS: Clinical observations in patients with long QT syndrome carrying sodium channel mutations (LQT3) suggest that bradycardia caused by parasympathetic stimulation may provoke torsades de pointes (TdP). beta-Adrenoceptor blockers appear less effective in LQT3 than in other forms of the disease. METHODS AND RESULTS: We studied effects of autonomic modulation on arrhythmias in vivo and in vitro and quantified sympathetic innervation by autoradiography in heterozygous mice with a knock-in deletion (DeltaKPQ) in the Scn5a gene coding for the cardiac sodium channel and increased late sodium current (LQT3 mice). Cholinergic stimulation by carbachol provoked bigemini and TdP in freely roaming LQT3 mice. No arrhythmias were provoked by physical stress, mental stress, isoproterenol, or atropine. In isolated, beating hearts, carbachol did not prolong action potentials per se, but caused bradycardia and rate-dependent action potential prolongation. The muscarinic inhibitor AFDX116 prevented effects of carbachol on heart rate and arrhythmias. beta-Adrenoceptor stimulation suppressed arrhythmias, shortened rate-corrected action potential duration, increased rate, and minimized difference in late sodium current between genotypes. beta-Adrenoceptor density was reduced in LQT3 hearts. Acute beta-adrenoceptor blockade by esmolol, propranolol or chronic propranolol in vivo did not suppress arrhythmias. Chronic flecainide pre-treatment prevented arrhythmias (all P < 0.05). CONCLUSION: Cholinergic stimulation provokes arrhythmias in this model of LQT3 by triggering bradycardia. beta-Adrenoceptor density is reduced, and beta-adrenoceptor blockade does not prevent arrhythmias. Sodium channel blockade and beta-adrenoceptor stimulation suppress arrhythmias by shortening repolarization and minimizing difference in late sodium current.status: publishe

    Development of central nervous system metastases as a first site of metastatic disease in breast cancer patients treated in the neoadjuvant trials GeparQuinto and GeparSixto

    Get PDF
    Background: The incidence of central nervous system (CNS) metastases in breast cancer patients is rising and has become a major clinical challenge. Only few data are published concerning risk factors for the development of CNS metastases as a first site of metastatic disease in breast cancer patients. Moreover, the incidence of CNS metastases after modern neoadjuvant treatment is not clear. Methods: We analyzed clinical factors associated with the occurrence of CNS metastases as the first site of metastatic disease in breast cancer patients after neoadjuvant treatment in the trials GeparQuinto and GeparSixto (nā€‰=ā€‰3160) where patients received targeted treatment in addition to taxane and anthracycline-based chemotherapy. Results: After a median follow-up of 61ā€‰months, 108 (3%) of a total of 3160 patients developed CNS metastases as the first site of recurrence and 411 (13%) patients had metastatic disease outside the CNS. Thirty-six patients (1%) developed both CNS metastases and other distant metastases as the first site of metastatic disease. Regarding subtypes of the primary tumor, 1% of luminal A-like (11/954), 2% of luminal B-like (7/381), 4% of HER2-positive (34/809), and 6% of triple-negative patients (56/1008) developed CNS metastases as the first site of metastatic disease. In multivariate analysis, risk factors for the development of CNS metastases were larger tumor size (cT3ā€“4; HR 1.63, 95% CI 1.08ā€“2.46, pā€‰=ā€‰0.021), node-positive disease (HR 2.57, 95% CI 1.64ā€“4.04, pā€‰&lt;ā€‰0.001), no pCR after neoadjuvant chemotherapy (HR 2.29, 95% CI 1.32ā€“3.97, pā€‰=ā€‰0.003), and HER2-positive (HR 3.80, 95% CI 1.89ā€“7.64, pā€‰&lt;ā€‰0.001) or triple-negative subtype (HR 6.38, 95% CI 3.28ā€“12.44, pā€‰&lt;ā€‰0.001). Conclusions: Especially patients with HER2-positive and triple-negative tumors are at risk of developing CNS metastases despite effective systemic treatment. A better understanding of the underlying mechanisms is required in order to develop potential preventive strategies

    The phylogeny of Ryocalanoidea (Copepoda, Calanoida)based on morphology and a multi-gene analysis with a description of new ryocalanoidean species

    No full text
    Two new species of ryocalanoid copepods (Crustacea: Calanoida), Ryocalanus squamatus sp. nov. and Yrocalanus kurilensis sp. nov. are described together with a female of Ryocalanus infelix Tanaka, 1956, type species for the genus Ryocalanus Tanaka, 1956, from abyssal depths in the Kurile-Kamchatka trench. The new species can be assigned to the superfamily Ryocalanoidea based on the segmentation and armature of the swimming legs and the modification of the male right antennule. A new interpretation of the fusions of segments in the male right antennule of Ryocalanus shows the marked differences between the ryocalanoidean genera. The status of Ryocalanoidea within the Calanoida is discussed based on morphology and a first molecular multi-gene analysis with cytochrome oxidase subunit I, cytochrome b, nuclear ribosomal 18S and 28S rDNA and internal transcribed spacer 2. This analysis supports the close interrelationship between Ryocalanoidea and Spinocalanoidea. The monophyletic status of Ryocalanoidea could not be retrieved in the phylogenetic analysis, as specimens of Yrocalanus formed a clade within Spinocalanoidea. The inconclusive results between morphological and molecular analyses are discussed with a proposition to keep the current system until more males of taxa belonging to the Spinocalanoidea are discovered, as the male antennule plays a crucial role in the interpretation of relationships between Ryocalanoidea and Spinocalanoidea

    Do molecular phylogenies unravel the relationships among the evolutionary young ā€œBradfordianā€ families (Copepoda; Calanoida)?

    No full text
    Among the most derived calanoid copepod superfamily Clausocalanoidea about half of the genera belong to the so-called ā€œBradfordianā€ families that are defined by the presence of sensory setae at the maxilla and maxilliped. Many of these ā€œBradfordianā€ taxa are insufficiently well described, because their taxonomy is complicated and phylogenetic relationships are not completely resolved. We therefore aimed to unravel their phylogenetic relationships using molecular multi-gene analyses. We conducted molecular multi-gene analysis on 26 species from 15 genera representing all seven ā€œBradfordianā€ families using five gene fragments, the nuclear ribosomal 18S, 28S and internal transcribed spacer 2 DNA, and mitochondrial cytochrome c oxidase subunit I and cytochrome b. The monophyly of ā€œBradfordiansā€ as one lineage in the superfamily Clausocalanoidea was supported by Maximum Likelihood and Bayesian Inference multi-gene analyses. Except for the support of species belonging to the same genus and specimens belonging to the same species, no phylogenetic relationships among genera and families were supported. The impossibility of resolving phylogenetic relationships among ā€œBradfordianā€ genera and families may be due to the young age or fast radiation of ā€œBradfordiansā€ within the mostly derived calanoid superfamily Clausocalanoidea. Therefore, mutation rates might be not sufficient to track phylogenetic relationships. Evidence on phylogenetic relationships between genera and families remain unresolved after implementing integrated morphological and molecular taxonomic approaches

    Influence of oral vitamin and mineral supplementation on male infertility:a meta-analysis and systematic review

    No full text
    This meta-analysis and systematic review investigated evidence of the effect of oral micronutrient supplementation on male fertility. Following searches of PubMed, Ovid/Ovid Medline(r) and Embase, 18 randomized, double-blind, placebo-controlled trials were included in the meta-analysis (seven studies) and/or the systematic review (12 studies). The meta-analysis showed significant improvement in semen parameters for selenium (200 mu g/day and 100 mu g/day) (standard mean difference [SMD] 0.64 for oligozoospermia, 1.39 for asthenozoospermia), L-carnitine (2 g/day) and acetyl-L-carnitine (LAC; 1 g/day) combined (SMD 0.57 for asthenozoospermia), and co-enzyme Q10 (200 and 300 mg/day) (SMD 0.95 for oligozoospermia, 1.48 for asthenozoospermia, 0.63 for teratozoospermia). The systematic review identified promising data for supplementation with 66 mg/day zinc combined with folic acid (5 mg/day), and the polyunsaturated fatty acids eicosapentaenoic acid (EPA; 1.12 g/day) and docosahexaenoic acid (DHA; 0.72 g/day). Pregnancy rate was evaluated in a limited number of trials (four in the meta-analysis, three in the systematic review). This analysis suggests supplementation with selenium (alone or combined with N-acetylcysteine), co-enzyme Q10 and the combinations L-carnitine + acetyl-L-carnitine, folic acid + zinc and EPA + DHA is beneficial in the treatment of male infertility. Because of the small number of available studies and low number of participants, further well-designed clinical studies are needed to obtain a better overview of efficient methods of treating male infertility

    Detection and Characterization of Estrogen Receptor Ī± Expression of Circulating Tumor Cells as a Prognostic Marker

    No full text
    CTCs have increasingly been used as a liquid biopsy analyte to obtain real-time information on the tumor through minimally invasive blood analyses. CTCs allow for the identification of proteins relevant for targeted therapies. Here, we evaluated the expression of estrogen receptors (ER) in CTCs of patients with metastatic breast cancer. From sixty metastatic breast cancer patients who had ER-positive primary tumors (range of 1ā€“70% immunostaining) at initial cancer diagnosis, 109 longitudinal blood samples were prospectively collected and analyzed using the CellSearch System in combination with the ERĪ± monoclonal murine ER-119.3 antibody. Prolonged cell permeabilization was found to be required for proper staining of nuclear ER in vitro. Thirty-one cases were found to be CTC-positive; an increased number of CTCs during endocrine and chemotherapy was correlated with disease progression, whereas a decrease or stable amount of CTC number (p = 0.0045) and overall survival (HR, 6.21; 95%CI, 2.66ā€“14.47; p < 0.0001). Only one-third of CTC-positive breast cancer patients, who were initially diagnosed with ER-positive primary tumors, harbored ER-positive CTCs at the time of metastasis, and even in those patients, both ER-positive and ER-negative CTCs were found. CTC-positivity was correlated with a shorter relapse-free survival. Remarkably, ER-negative CTCs were frequent despite initial ER-positive status of the primary tumor, suggesting a switch of ER phenotype or selection of minor ER-negative clones as a potential mechanism of escape from ER-targeting therapy

    Insights into the Steps of Breast Cancerā€“Brain Metastases Development: Tumor Cell Interactions with the Bloodā€“Brain Barrier

    No full text
    Brain metastases (BM) represent a growing problem for breast cancer (BC) patients. Recent studies have demonstrated a strong impact of the BC molecular subtype on the incidence of BM development. This study explores the interaction between BC cells of different molecular subtypes and the bloodā€“brain barrier (BBB). We compared the ability of BC cells of different molecular subtypes to overcome several steps (adhesion to the brain endothelium, disruption of the BBB, and invasion through the endothelial layer) during cerebral metastases formation, in vitro as well as in vivo. Further, the impact of these cells on the BBB was deciphered at the molecular level by transcriptome analysis of the triple-negative (TNBC) cells themselves as well as of hBMECs after cocultivation with BC cell secretomes. Compared to luminal BC cells, TNBC cells have a greater ability to influence the BBB in vitro and consequently develop BM in vivo. The brain-seeking subline and parental TNBC cells behaved similarly in terms of adhesion, whereas the first showed a stronger impact on the brain endothelium integrity and increased invasive ability. The comparative transcriptome revealed potential brain-metastatic-specific key regulators involved in the aforementioned processes, e.g., the angiogenesis-related factors TNXIP and CXCL1. In addition, the transcriptomes of the two TNBC cell lines strongly differed in certain angiogenesis-associated factors and in several genes related to cell migration and invasion. Based on the present study, we hypothesize that the tumor cellā€™s ability to disrupt the BBB via angiogenesis activation, together with increased cellular motility, is required for BC cells to overcome the BBB and develop brain metastases

    Key Role of Hyaluronan Metabolism for the Development of Brain Metastases in Triple-Negative Breast Cancer

    No full text
    Breast cancer (BC) is the second-most common cause of brain metastases (BM) and BCBM patients have a reduced quality of life and a poor prognosis. Hyaluronan (HA), and in particular the hyaluronidase Hyal-1, has been already linked to the development of BCBM, and therefore presents an interesting opportunity to develop new effective therapeutic options. HA metabolism was further discovered by the CRISPR/Cas9-mediated knockout of HYAL1 and the shRNA-mediated down-regulation of HA-receptor CD44 in the brain-seeking triple-negative breast cancer (TNBC) cell line MDA-MB-231-BR. Therefore, the impact of Hyal-1 on adhesion, disruption, and invasion through the brain endothelium, both in vitro and in vivo, was studied. Our analysis points out a key role of Hyal-1 and low-molecular-weight HA (LMW-HA) in the formation of a pericellular HA-coat in BC cells, which in turn promotes tumor cell adhesion, disruption, and migration through the brain endothelium in vitro as well as the extent of BM in vivo. CD44 knockdown in MDA-MB-231-BR significantly reduced the pericellular HA-coat on these cells, and, consequently, tumor cell adhesion and invasion through the brain endothelium. Thus, the interaction between Hyal-1-generated LMW-HA fragments and the HA-receptor CD44 might represent a potential target for future therapeutic options in BC patients with a high risk of cerebral metastases formation
    corecore