12 research outputs found

    The ratio between cerebral blood flow and Tmax predicts the quality of collaterals in acute ischemic stroke

    Get PDF
    Background In acute ischemic stroke the status of collateral circulation is a critical factor in determining outcome. We propose a less invasive alternative to digital subtraction angiography for evaluating collaterals based on dynamic-susceptibility contrast magnetic resonance imaging. Methods Perfusion maps of Tmax and cerebral blood flow (CBF) were created for 35 patients with baseline occlusion of a major cerebral artery. Volumes of hypoperfusion were defined as having a Tmax delay of > 4 seconds (Tmax4s) and > 6 seconds (Tmax6s) and a CBF drop below 80% of healthy, contralateral tissue. For each patient a ratio between the volume of the CBF and the Tmax based perfusion deficit was calculated. Associations with collateral status and radiological outcome were assessed with the Mann-Whitney-U test, uni- and multivariable logistic regression analyses as well as area under the receiver-operator- characteristic (ROC) curve. Results The CBF/Tmax volume ratios were significantly associated with bad collateral status in crude logistic regression analysis as well as with adjustment for NIHSS at admission and baseline infarct volume (OR = 2.5 95% CI[1.2–5.4] p = 0.020 for CBF/Tmax 4s volume ratio and OR = 1.6 95% CI[1.0–2.6] p = 0.031 for CBF/Tmax6s volume ratio). Moreover, the ratios were significantly correlated to final infarct size (Spearman’s rho = 0.711 and 0.619, respectively for the CBF/Tmax4s volume ratio and CBF/Tmax6s volume ration, all p<0.001). The ratios also had a high area under the ROC curve of 0.93 95%CI[0.86–1.00]) and 0.90 95%CI[0.80–1.00]respectively for predicting poor radiological outcome. Conclusions In the setting of acute ischemic stroke the CBF/Tmax volume ratio can be used to differentiate between good and insufficient collateral circulation without the need for invasive procedures like conventional angiography

    Comparison of two patients both imaged 1 hour after symptom onset with a proximal occlusion of the middle cerebral artery and a Higashida score of 2 on source DSC MRI.

    No full text
    <p>Patient A had a left-sided stroke with NIHSS at admission of 12, an initial infarct volume of 3.8ml, perfusion deficit of 200ml on Tmax4s and 108ml on CBF with a CBF/Tmax4s volume ratio of 0.54. The final infarct size was 15.5ml. Patient B had a right-sided stroke with NIHSS at admission of 19, an initial infarct volume of 5.8ml, perfusion deficit of 87ml on Tmax4s and 84ml on CBF with a CBF/Tmax4s volume ratio of 0.96. The final infarct size was 208ml.</p

    Mismatch_CBF_Tmax_collaterals_acute_stroke.xlsx

    No full text
    Demographic data and results pertaining to the manuscript "The mismatch between cerebral blood flow and Tmax predicts the quality of collaterals in acute ischemic stroke

    Receiver operating characteristic (ROC) curves shown for the two CBF/Tmax volume ratios illustrating the performance of various cut-offs to identify patients with poor radiological outcome.

    No full text
    <p>Receiver operating characteristic (ROC) curves shown for the two CBF/Tmax volume ratios illustrating the performance of various cut-offs to identify patients with poor radiological outcome.</p

    Scatter plot of the relationship between CBF/Tmax4s volume ratio, infarct growth and final infarct size, additionally divided based on type of vessel occlusion.

    No full text
    <p>Scatter plot of the relationship between CBF/Tmax4s volume ratio, infarct growth and final infarct size, additionally divided based on type of vessel occlusion.</p

    Epitope specificity of anti-synapsin autoantibodies: Differential targeting of synapsin I domains.

    Get PDF
    OBJECTIVE:To identify the specific domains of the presynaptic protein synapsin targeted by recently described autoantibodies to synapsin. METHODS:Sera of 20 and CSF of two patients with different psychiatric and neurological disorders previously tested positive for immunoglobulin (Ig)G antibodies to full-length synapsin were screened for IgG against synapsin I domains using HEK293 cells transfected with constructs encoding different domains of rat synapsin Ia. Additionally, IgG subclasses were determined using full-length synapsin Ia. Serum and CSF from one patient were also screened for IgA autoantibodies to synapsin I domains. Sera from nine and CSF from two healthy subjects were analyzed as controls. RESULTS:IgG in serum from 12 of 20 IgG synapsin full-length positive patients, but from none of the healthy controls, bound to synapsin domains. Of these 12 sera, six bound to the A domain, five to the D domain, and one to the B- (and possibly A-), D-, and E-domains of synapsin I. IgG antibodies to the D-domain were also detected in one of the CSF samples. Determination of IgG subclasses detected IgG1 in two sera and one CSF, IgG2 in none of the samples, IgG3 in two sera, and IgG4 in eight sera. One patient known to be positive for IgA antibodies to full-length synapsin had IgA antibodies to the D-domain in serum and CSF. CONCLUSIONS:Anti-synapsin autoantibodies preferentially bind to either the A- or the D-domain of synapsin I

    Investigating the clinico-anatomical dissociation in the behavioral variant of Alzheimer disease

    Get PDF
    Background: We previously found temporoparietal-predominant atrophy patterns in the behavioral variant of Alzheimer’s disease (bvAD), with relative sparing of frontal regions. Here, we aimed to understand the clinico-anatomical dissociation in bvAD based on alternative neuroimaging markers. Methods: We retrospectively included 150 participants, including 29 bvAD, 28 “typical” amnestic-predominant AD (tAD), 28 behavioral variant of frontotemporal dementia (bvFTD), and 65 cognitively normal participants. Patients with bvAD were compared with other diagnostic groups on glucose metabolism and metabolic connectivity measured by [18F]FDG-PET, and on subcortical gray matter and white matter hyperintensity (WMH) volumes measured by MRI. A receiver-operating-characteristic-analysis was performed to determine the neuroimaging measures with highest diagnostic accuracy. Results: bvAD and tAD showed predominant temporoparietal hypometabolism compared to controls, and did not differ in direct contrasts. However, overlaying statistical maps from contrasts between patients and controls revealed broader frontoinsular hypometabolism in bvAD than tAD, partially overlapping with bvFTD. bvAD showed greater anterior default mode network (DMN) involvement than tAD, mimicking bvFTD, and reduced connectivity of the posterior cingulate cortex with prefrontal regions. Analyses of WMH and subcortical volume showed closer resemblance of bvAD to tAD than to bvFTD, and larger amygdalar volumes in bvAD than tAD respectively. The top-3 discriminators for bvAD vs. bvFTD were FDG posterior-DMN-ratios (bvADbvFTD, area under the curve [AUC] range 0.85–0.91, all p tAD), MRI anterior-DMN-ratios (bvAD<tAD), FDG anterior-DMN-ratios (bvAD<tAD, AUC range 0.71–0.84, all p < 0.05). Conclusions: Subtle frontoinsular hypometabolism and anterior DMN involvement may underlie the prominent behavioral phenotype in bvAD
    corecore