81 research outputs found

    Els cossos d'inclusió bacterians tenen proteïnes funcionals

    Get PDF
    Un grup d'investigadors de la UAB acaba de fer una descoberta important en el camp biotecnològic: han localitzat proteïnes funcionals a l'interior dels cossos d'inclusió bacterians, el que permet d'utilizar-los com a biocatalitzadors quan estan formats per enzims i augmentar l'espectre de producció d'aquestes proteïnes.Un grupo de investigadores de la UAB acaba de hacer un descubrimiento importante en el campo biotecnológico: han localizado proteínas funcionales en el interior de los cuerpos de inclusión bacterianos, lo que permite utilizarlos como biocatalizadores cuando están formados por enzimas y aumentar el espectro de producción de estas proteínas.A UAB researchers group have just discovered an important event for the biotechnology field. They have found functional proteins inside the bacterial inclusion bodies. That allows to use the bacterial inclusion bodies like biocatalyst when they are formed by enzymes and to increase the spectrum of production of these proteins

    Lactic acid bacteria : reviewing the potential of a promising delivery live vector for biomedical purposes

    Get PDF
    Lactic acid bacteria (LAB) have a long history of safe exploitation by humans, being used for centuries in food production and preservation and as probiotic agents to promote human health. Interestingly, some species of these Gram-positive bacteria, which are generally recognized as safe organisms by the US Food and Drug Administration (FDA), are able to survive through the gastrointestinal tract (GIT), being capable to reach and colonize the intestine, where they play an important role. Besides, during the last decades, an important effort has been done for the development of tools to use LAB as microbial cell factories for the production of proteins of interest. Given the need to develop effective strategies for the delivery of prophylactic and therapeutic molecules, LAB have appeared as an appealing option for the oral, intranasal and vaginal delivery of such molecules. So far, these genetically modified organisms have been successfully used as vehicles for delivering functional proteins to mucosal tissues in the treatment of many different pathologies including GIT related pathologies, diabetes, cancer and viral infections, among others. Interestingly, the administration of such microorganisms would suppose a significant decrease in the production cost of the treatments agents since being live organisms, such vectors would be able to autonomously amplify and produce and deliver the protein of interest. In this context, this review aims to provide an overview of the use of LAB engineered as a promising alternative as well as a safety delivery platform of recombinant proteins for the treatment of a wide range of diseases

    Trends in recombinant protein use in animal production

    Get PDF
    Recombinant technologies have made possible the production of a broad catalogue of proteins of interest, including those used for animal production. The most widely studied proteins for the animal sector are those with an important role in reproduction, feed efficiency, and health. Nowadays, mammalian cells and fungi are the preferred choice for recombinant production of hormones for reproductive purposes and fibrolytic enzymes to enhance animal performance, respectively. However, the development of low-cost products is a priority, particularly in livestock. The study of cell factories such as yeast and bacteria has notably increased in the last decades to make the new developed reproductive hormones and fibrolytic enzymes a real alternative to the marketed ones. Important efforts have also been invested to developing new recombinant strategies for prevention and therapy, including passive immunization and modulation of the immune system. This offers the possibility to reduce the use of antibiotics by controlling physiological processes and improve the efficacy of preventing infections. Thus, nowadays different recombinant fibrolytic enzymes, hormones, and therapeutic molecules with optimized properties have been successfully roduced through cost-effective processes using microbial cell factories. However, despite the important achievements for reducing protein production expenses, alternative strategies to further reduce these costs are still required. In this context, it is necessary to make a giant leap towards the use of novel strategies, such as nanotechnology, that combined with recombinant technology would make recombinant molecules affordable for animal industry.info:eu-repo/semantics/publishedVersio

    Short Communication: The biological value of transition milk: analyses of Immunoglobulin G, IGF-I and Lactoferrin in primiparous and multiparous dairy cows

    Get PDF
    Colostrum (the first mammary gland secretion after calving) is known to contain high concentrations of nutrients as well as bioactive substances (including immunoglobulins, growth factors, and antimicrobial factors) to ensure neonatal survival. Due to its immunomodulatory, antibacterial, and antiviral activities, bovine colostrum has been used not only in calves but also in the prevention and treatment of human gastrointestinal and respiratory infections. Transition milk is the mammary secretion from the second milking to the sixth, which may contain these bioactive compounds to a lesser extent. The objective of the present study was to measure IGF-I, immunoglobulin G (IgG), and lactoferrin (LTF) concentrations in colostrum and transition milk of primiparous and multiparous cows to further assess its potential use in veterinary and nutraceutical applications. The results demonstrated that the concentrations of these three bioactive molecules decrease from the first milking to the tenth. Concentrations of IGF-I and LTF were greater in multiparous than in primiparous cows. Also, lactation number interacted with milking number in IGF-I, since primiparous cows had a smoother decline of IGF-I concentrations than multiparous ones. Overall, transition milk from the second milking showed a 46% decrease in the analysed colostrum bioactive molecules. Therefore, further studies are needed to apply this knowledge in neonate farm management practices or in developing pharmaceutical supplements from farm surpluses.info:eu-repo/semantics/publishedVersio

    A new generation of recombinant polypeptides combines multiple protein domains for effective antimicrobial activity

    Get PDF
    Background Although most of antimicrobial peptides (AMPs), being relatively short, are produced by chemical synthesis, several AMPs have been produced using recombinant technology. However, AMPs could be cytotoxic to the producer cell, and if small they can be easily degraded. The objective of this study was to produce a multidomain antimicrobial protein based on recombinant protein nanoclusters to increase the yield, stability and effectivity. Results A single antimicrobial polypeptide JAMF1 that combines three functional domains based on human α-defensin-5, human XII-A secreted phospholipase A2 (sPLA2), and a gelsolin-based bacterial-binding domain along with two aggregation-seeding domains based on leucine zippers was successfully produced with no toxic effects for the producer cell and mainly in a nanocluster structure. Both, the nanocluster and solubilized format of the protein showed a clear antimicrobial effect against a broad spectrum of Gram-negative and Gram-positive bacteria, including multi-resistant strains, with an optimal concentration between 1 and 10 µM. Conclusions Our findings demonstrated that multidomain antimicrobial proteins forming nanoclusters can be efficiently produced in recombinant bacteria, being a novel and valuable strategy to create a versatile, highly stable and easily editable multidomain constructs with a broad-spectrum antimicrobial activity in both soluble and nanostructured format.info:eu-repo/semantics/publishedVersio

    Short communication: Recombinant mammary serum amyloid A3 as a potential strategy for preventing intramammary infections in dairy cows at dryoff

    Get PDF
    Mammary serum amyloid A3 (M-SAA3) has shown potential in stimulating innate immunity during intramammary infections, at calving and at dryoff. In this study, we produced recombinant caprine M-SAA3 to test its ability to reduce intramammary infections with Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli, which are all common mastitis-producing pathogens. Recombinant production of M-SAA3 (followed by lipopolysaccharide removal to avoid lipopolysaccharide-nonspecific stimulation of the immune system) was successfully achieved. Mammary serum amyloid A3 stimulated the expression of IL-8 in a dose-dependent manner in primary mammary cultures. Although a direct killing effect on Staph. aureus by M-SAA3 was not detected, this acute phase protein was able to reduce Staph. aureus, Strep. uberis, and Strep. dysgalactiae infections by up to 50% and induced a reduction in E. coli counts of 67%. In general, the best concentration of caprine M-SAA3 for inhibiting infections was the lowest concentration tested (10 μg/mL), although higher concentrations (up to 160 μg/mL) increased its antimicrobial potential against some pathogens.info:eu-repo/semantics/acceptedVersio

    Exploring the impact of the recombinant Escherichia coli strain on defensins antimicrobial activity: BL21 versus Origami strain

    Get PDF
    The growing emergence of microorganisms resistant to antibiotics has prompted the development of alternative antimicrobial therapies. Among them, the antimicrobial peptides produced by innate immunity, which are also known as host defense peptides (HDPs), hold great potential. They have been shown to exert activity against both Gram-positive and Gram-negative bacteria, including those resistant to antibiotics. These HDPs are classified into three categories: defensins, cathelicidins, and histatins. Traditionally, HDPs have been chemically synthesized, but this strategy often limits their application due to the high associated production costs. Alternatively, some HDPs have been recombinantly produced, but little is known about the impact of the bacterial strain in the recombinant product. This work aimed to assess the influence of the Escherichia coli strain used as cell factory to determine the activity and stability of recombinant defensins, which have 3 disulfide bonds. For that, an α-defensin [human α-defensin 5 (HD5)] and a β-defensin [bovine lingual antimicrobial peptide (LAP)] were produced in two recombinant backgrounds. The first one was an E. coli BL21 strain, which has a reducing cytoplasm, whereas the second was an E. coli Origami B, that is a strain with a more oxidizing cytoplasm. The results showed that both HD5 and LAP, fused to Green Fluorescent Protein (GFP), were successfully produced in both BL21 and Origami B strains. However, differences were observed in the HDP production yield and bactericidal activity, especially for the HD5-based protein. The HD5 protein fused to GFP was not only produced at higher yields in the E. coli BL21 strain, but it also showed a higher quality and stability than that produced in the Origami B strain. Hence, this data showed that the strain had a clear impact on both HDPs quantity and quality.info:eu-repo/semantics/publishedVersio

    I am uncertain” vs “it is uncertain”. How linguistic markers of the uncertainty source affect uncertainty communication

    Get PDF
    Two psychological sources of uncertainty bear implications for judgment and decision-making: external uncertainty is seen as stemming from properties of the world, whereas internal uncertainty is seen as stemming from lack of knowledge. The apparent source of uncertainty can be conveyed through linguistic markers, such as the pronoun of probability phrases (e.g., I am uncertain vs. It is uncertain). Here, we investigated whether and when speakers use different pronoun subjects as such linguistic markers (Exp. 1 and 2) and what hearers infer from them (Exp. 3 and 4). Speakers more often described higher probabilities and knowable outcomes with internal probability phrases. In dialogue, speakers mirrored the source of their conversational partner. Markers of the source had a main effect or interacted with the probability conveyed and speaker expertise to shape the judgments and decisions of hearers. For example, experts voicing an internal probability phrase were judged as more knowledgeable than experts using an external probability phrase whereas the result was the opposite for lay speakers. We discuss how these findings inform our understanding of subjective uncertainty and uncertainty communication theories

    Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications

    Get PDF
    Background Inclusion bodies (IBs) are biologically active protein aggregates forming natural nanoparticles with a high stability and a slow-release behavior. Because of their nature, IBs have been explored to be used as biocatalysts, in tissue engineering, and also for human and animal therapies. To improve the production and biological efficiency of this nanomaterial, a wide range of aggregation tags have been evaluated. However, so far, the presence in the IBs of bacterial impurities such as lipids and other proteins coexisting with the recombinant product has been poorly studied. These impurities could strongly limit the potential of IB applications, being necessary to control the composition of these bacterial nanoparticles. Thus, we have explored the use of leucine zippers as alternative tags to promote not only aggregation but also the generation of a new type of IB-like protein nanoparticles with improved physicochemical properties. Results Three different protein constructs, named GFP, J-GFP-F and J/F-GFP were engineered. J-GFP-F corresponded to a GFP flanked by two leucine zippers (Jun and Fos); J/F-GFP was formed coexpressing a GFP fused to Jun leucine zipper (J-GFP) and a GFP fused to a Fos leucine zipper (F-GFP); and, finally, GFP was used as a control without any tag. All of them were expressed in Escherichia coli and formed IBs, where the aggregation tendency was especially high for J/F-GFP. Moreover, those IBs formed by J-GFP-F and J/F-GFP constructs were smaller, rougher, and more amorphous than GFP ones, increasing surface/mass ratio and, therefore, surface for protein release. Although the lipid and carbohydrate content were not reduced with the addition of leucine zippers, interesting differences were observed in the protein specific activity and conformation with the addition of Jun and Fos. Moreover, J-GFP-F and J/F-GFP nanoparticles were purer than GFP IBs in terms of protein content. Conclusions This study proved that the use of leucine zippers strategy allows the formation of IBs with an increased aggregation ratio and protein purity, as we observed with the J/F-GFP approach, and the formation of IBs with a higher specific activity, in the case of J-GFP-F IBs. Thus, overall, the use of leucine zippers seems to be a good system for the production of IBs with more promising characteristics useful for pharma or biotech applications.info:eu-repo/semantics/publishedVersio

    Expanding the recombinant protein quality in Lactococcus lactis

    Get PDF
    Background: Escherichia coli has been a main host for the production of recombinant proteins of biomedical interest, but conformational stress responses impose severe bottlenecks that impair the production of soluble, proteolytically stable versions of many protein species. In this context, emerging Generally Recognized As Safe (GRAS) bacterial hosts provide alternatives as cell factories for recombinant protein production, in which limitations associated to the use of Gram-negative microorganisms might result minimized. Among them, Lactic Acid Bacteria and specially Lactococcus lactis are Gram-positive GRAS organisms in which recombinant protein solubility is generically higher and downstream facilitated, when compared to E. coli. However, deep analyses of recombinant protein quality in this system are still required to completely evaluate its performance and potential for improvement. - Results : we have explored here the conformational quality (through specific fluorescence emission) and solubility of an aggregation-prone GFP variant (VP1GFP) produced in L. lactis. In this context, our results show that parameters such as production time, culture conditions and growth temperature have a dramatic impact not only on protein yield, but also on protein solubility and conformational quality, that are particularly favored under fermentative metabolism. - Conclusions: metabolic regime and cultivation temperature greatly influence solubility and conformational quality of an aggregation-prone protein in L. lactis. Specifically, the present study proves that anaerobic growth is the optimal condition for recombinant protein production purposes. Besides, growth temperature plays an important role regulating both protein solubility and conformational quality. Additionally, our results also prove the great versatility for the manipulation of this bacterial system regarding the improvement of functionality, yield and quality of recombinant proteins in this species. These findings not only confirm L. lactis as an excellent producer of recombinant proteins but also reveal room for significant improvement by the exploitation of external protein quality modulators
    corecore