8 research outputs found

    Compound heterozygous loss of function variants in MYL9 in a child with megacystis–microcolon–intestinal hypoperistalsis syndrome

    No full text
    Abstract Megacystis–microcolon–intestinal hypoperistalsis syndrome (MMIHS), or “visceral myopathy,” is a severe early onset disorder characterized by impaired muscle contractility in the bladder and intestines. Five genes are linked to MMIHS: primarily ACTG2, but also LMOD1, MYH11, MYLK, and MYL9. Here we describe a three‐year‐old girl with bilateral hydronephrosis diagnosed at 20 weeks gestation and congenital mydriasis (both of which have been previously observed among individuals with MMIHS). A clinical diagnosis of MMIHS was made based upon the presence of megacystis, lack of urinary bladder peristalsis, and intestinal pseudo‐obstruction. After initial testing of ACTG2 was negative, further sequencing and deletion/duplication testing was performed on the LMOD1, MYH11,MYLK, and MYL9 genes. We identified two heterozygous loss of function variants in MYL9: an exon 4 deletion and a nine base pair deletion that removes the canonical splicing donor site at exon 2 (NM_006097.5:c.184+2_184+10del). Parental testing confirmed these variants to be in trans in our proband. To our knowledge, only one other individual with MMIHS has biallelic mutations in MYL9 (a homozygous deletion encompassing exon 4). We suggest MYL9 be targeted on genetic testing panels for MMIHS, smooth muscle myopathies, and cardiovascular phenotypes

    Missense variants in DPYSL5 cause a neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities

    Get PDF
    International audienceThe collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and βIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and βIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders

    Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome.

    No full text
    Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype

    Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome

    No full text
    Abstract Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a “Dubowitz-like” condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype
    corecore