22 research outputs found

    Modeling sample variables with an Experimental Factor Ontology

    Get PDF
    Motivation: Describing biological sample variables with ontologies is complex due to the cross-domain nature of experiments. Ontologies provide annotation solutions; however, for cross-domain investigations, multiple ontologies are needed to represent the data. These are subject to rapid change, are often not interoperable and present complexities that are a barrier to biological resource users

    A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB

    Get PDF
    BACKGROUND: Sharing of microarray data within the research community has been greatly facilitated by the development of the disclosure and communication standards MIAME and MAGE-ML by the MGED Society. However, the complexity of the MAGE-ML format has made its use impractical for laboratories lacking dedicated bioinformatics support. RESULTS: We propose a simple tab-delimited, spreadsheet-based format, MAGE-TAB, which will become a part of the MAGE microarray data standard and can be used for annotating and communicating microarray data in a MIAME compliant fashion. CONCLUSION: MAGE-TAB will enable laboratories without bioinformatics experience or support to manage, exchange and submit well-annotated microarray data in a standard format using a spreadsheet. The MAGE-TAB format is self-contained, and does not require an understanding of MAGE-ML or XML

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Developing an application ontology for annotation of experimental variables – Experimental Factor Ontology

    No full text
    The Experimental Factor Ontology ("www.ebi.ac.uk/efo":http://www.ebi.ac.uk/efo) is an application focused ontology modelling the experimental factors in ArrayExpress. The ontology has been developed to increase the richness of the annotations that are currently made in the ArrayExpress repository, to promote consistent annotation, to facilitate automatic annotation and to integrate external data. The methodology employed in the development of EFO involves construction of mappings to multiple existing domain specific ontologies, such as the Disease Ontology and Cell Type Ontology

    MAGETabulator, a suite of tools to support the microarray data format MAGE-TAB

    Get PDF
    Original article can be found at: http://bioinformatics.oxfordjournals.org/cgi/ "This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/UK) which permits unrestricted non-commercial use, distribution and reproduction in any medium, providing the original work is properly cited." DOI: 10.1093/bioinformatics/btn617The MAGE-TAB format for microarray data representation and exchange has been proposed by the microarray community to replace the more complex MAGE-ML format. We present a suite of tools to support MAGE-TAB generation and validation, conversion between existing formats for data exchange, visualization of the experiment designs encoded by MAGE-TAB documents and the mining of such documents for semantic content.Peer reviewe
    corecore