1,518 research outputs found

    Resolved photometry of extragalactic young massive star clusters

    Full text link
    We present colour-magnitude diagrams (CMDs) for a sample of seven young massive clusters in the galaxies NGC 1313, NGC 1569, NGC 1705, NGC 5236 and NGC 7793. The clusters have ages in the range 5-50 million years and masses of 10^5 -10^6 Msun. Although crowding prevents us from obtaining photometry in the central regions of the clusters, we are still able to measure up to 30-100 supergiant stars in each of the richest clusters, along with the brighter main sequence stars. The resulting CMDs and luminosity functions are compared with photometry of artificially generated clusters, designed to reproduce the photometric errors and completeness as realistically as possible. In agreement with previous studies, our CMDs show no clear gap between the H-burning main sequence and the He-burning supergiant stars, contrary to predictions by common stellar isochrones. In general, the isochrones also fail to match the observed number ratios of red-to-blue supergiant stars, although the difficulty of separating blue supergiants from the main sequence complicates this comparison. In several cases we observe a large spread (1-2 mag) in the luminosities of the supergiant stars that cannot be accounted for by observational errors. This spread can be reproduced by including an age spread of 10-30 million years in the models. However, age spreads cannot fully account for the observed morphology of the CMDs and other processes, such as the evolution of interacting binary stars, may also play a role.Comment: 15 pages, 12 figures, accepted for publication in A&

    A pilot cluster randomised trial to assess the effect of a structured communication approach on quality of life in secure mental health settings: the Comquol study

    Get PDF
    Background There is a lack of research in forensic settings examining therapeutic relationships. A structured communication approach, placing patients’ perspectives at the heart of discussions about their care, was used to improve patients’ quality of life in secure settings. The objectives were to: • Establish the feasibility of the trial design • Determine the variability of the outcomes of interest • Estimate the costs of the intervention • If necessary, refine the intervention Methods A pilot cluster randomised controlled trial was conducted. Data was collected from July 2012 to January 2015 from participants in 6 medium secure in–patient services in London and Southern England. 55 patients and 47 nurses were in the intervention group with 57 patients and 45 nurses in the control group. The intervention comprised 6 nurse-patient meetings over a 6 month period. Patients rated their satisfaction with a range of domains followed by discussions on improving patient identified problems. Assessments took place at baseline, 6 months, and 12 months. Participants were not blind to their allocated group. The primary outcome was self-reported quality of life collected by a researcher blind to participants’ allocation status. Results The randomisation procedures and intervention approach functioned well. The measures used were understood by the participants and gave relevant outcome information. The response rates were good with low patient withdrawal rates. The quality of life estimated treatment effect was 0.2 (95% CI: -0.4 to 0.8) at 6 months and 0.4 (95% CI: -0.3 to 1.1) indicating the likely extreme boundaries of effect in the main trial. The estimated treatment effect of the primary outcome is clinically important, and a positive effect of the intervention is not ruled out. The estimate of the ICC for the primary outcome at 6 and 12 months was 0.04 (0.00 to 0.17) and 0.05 (0.00 to 0.18). The cost of the intervention was £529 per patient. Conclusions The trial design was viable as the basis for a full-scale trial. A full trial is justified to estimate the effect of the intervention with greater certainty. The variability of the outcomes could be used to calculate numbers needed for a full-scale trial. Ratings of need for therapeutic security may be useful in any future study

    A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    Get PDF
    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Agency's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar(TradeMark) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar(TradeMark) filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However, due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to the experimental investigation reported in [1] and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel's residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV hardware

    On the Progenitors of Core-Collapse Supernovae

    Full text link
    Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is thought to usually be accompanied by the ejection of the star's envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of "failed supernovae", and our understanding of the core-collapse explosion mechanism.Comment: 7 Pages, invited review accepted for publication by Astrophysics and Space Science (special HEDLA 2010 issue

    The IACOB project VIII. Searching for empirical signatures of binarity in fast-rotating O-type stars

    Full text link
    The empirical distribution of projected rotational velocities (vsini) in massive O-type stars is characterized by a dominant slow velocity component and a tail of fast rotators. Binary interaction has been proposed to play a dominant role in the formation of this tail. We perform a complete and homogeneous search for empirical signatures of binarity in a sample of 54 fast-rotating stars with the aim of evaluating this hypothesis. This working sample has been extracted from a larger sample of 415 Galactic O-type stars which covers the full range of vsini values. We use new and archival multi-epoch spectra in order to detect spectroscopic binary systems. We complement this information with Gaia proper motions and TESS photometric data to aid in the identification of runaway stars and eclipsing binaries, respectively. The identified fraction of single-lined spectroscopic binary (SB1) systems and apparently single stars among the fast-rotating sample is ∼\sim18% and ∼\sim70%, respectively. When comparing these percentages with those corresponding to the slow-rotating sample we find that our sample of fast rotators is characterized by a slightly larger percentage of SB1 systems (∼\sim18% vs. ∼\sim13%) and a considerably smaller fraction of clearly detected SB2 systems (8% vs. 33%). Overall, there seems to be a clear deficit of spectroscopic binaries (SB1+SB2) among fast-rotating O-type stars (∼\sim26% vs. ∼\sim46%). On the contrary, the fraction of runaway stars is significantly higher in the fast-rotating domain (∼\sim33-50%) than among those stars with vsini < 200 km/s. Lastly, almost 65% of the apparently single fast-rotating stars are runaways. Our empirical results seem to be in good agreement with the idea that the tail of fast-rotating O-type stars (with vsini > 200 km/s) is mostly populated by post-interaction binary products.Comment: 33 pages, 16 figures, accepted for publication in "Astronomy and Astrophysics

    Dealing with mobility: Understanding access anytime, anywhere

    Get PDF
    The rapid and accelerating move towards the adoption and use of mobile technologies has increasingly provided people and organisations with the ability to work away from the office and on the move. The new ways of working afforded by these technologies are often characterised in terms of access to information and people ‘anytime, anywhere’. This paper presents a study of mobile workers that highlights different facets of access to remote people and information, and different facets of anytime, anywhere. Four key factors in mobile work are identified from the study: the role of planning, working in ‘dead time’, accessing remote technological and informational resources, and monitoring the activities of remote colleagues. By reflecting on these issues, we can better understand the role of technology and artefact use in mobile work and identify the opportunities for the development of appropriate technological solutions to support mobile workers

    A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    Get PDF
    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV hardware
    • …
    corecore