4,507 research outputs found

    Snowex 2017 Community Snow Depth Measurements: A Quality-Controlled, Georeferenced Product

    Get PDF
    Snow depth was one of the core ground measurements required to validate remotely-sensed data collected during SnowEx Year 1, which occurred in Colorado. The use of a single, common protocol was fundamental to produce a community reference dataset of high quality. Most of the nearly 100 Grand Mesa and Senator Beck Basin SnowEx ground crew participants contributed to this crucial dataset during 6-25 February 2017. Snow depths were measured along ~300 m transects, whose locations were determined according to a random-stratified approach using snowfall and tree-density gradients. Two-person teams used snowmobiles, skis, or snowshoes to travel to staked transect locations and to conduct measurements. Depths were measured with a 1-cm incremented probe every 3 meters along transects. In shallow areas of Grand Mesa, depth measurements were also collected with GPS snow-depth probes (a.k.a. MagnaProbes) at ~1-m intervals. During summer 2017, all reference stake positions were surveyed with <10 cm accuracy to improve overall snow depth location accuracy. During the campaign, 193 transects were measured over three weeks at Grand Mesa and 40 were collected over two weeks in Senator Beck Basin, representing more than 27,000 depth values. Each day of the campaign depth measurements were written in waterproof field books and photographed by National Snow and Ice Data Center (NSIDC) participants. The data were later transcribed and prepared for extensive quality assessment and control. Common issues such as protocol errors (e.g., survey in reverse direction), notebook image issues (e.g., halo in the center of digitized picture), and data-entry errors (sloppy writing and transcription errors) were identified and fixed on a point-by-point basis. In addition, we strove to produce a georeferenced product of fine quality, so we calculated and interpolated coordinates for every depth measurement based on surveyed stakes and the number of measurements made per transect. The product has been submitted to NSIDC in csv format. To educate data users, we present the study design and processing steps that have improved the quality and usability of this product. Also, we will address measurement and design uncertainties, which are different in open vs. forest areas

    Tangible First Steps: Inclusion Committees as a Strategy to Create Inclusive Schools in Western Kenya

    Get PDF
    This paper provides one example of forming an inclusion committee in Kenya toward the vision of creating inclusive primary school campuses. We suggest the development of inclusion committees as a potential innovative strategy and a critical element of community reform toward disability awareness, and to increase access to primary school education for students with disabilities. The formation of the inclusion committee followed a member-driven process for identifying barriers to educational access for students with disabilities, prioritizing the needs within their local context, determining a plan of action to address these needs within existing community resources, and gaining access to new resources. Recognizing access to equitable education as a universal human right supported by local and international legislation, this paper works within the tensions that exist between Western constructs of education and how they are applied in post-colonial countries in the global South. Our findings suggest that establishing diverse participation among stakeholders led to even more inclusive representation; that inclusion committee actions led to local and national level involvement with the initiative; and that community-driven progress toward inclusive education presented both strengths and challenges in terms of sustainability. Finally, we discuss implications for under-resourced schools, including those in the global North

    Noise and dynamical pattern selection

    Full text link
    In pattern forming systems such as Rayleigh-Benard convection or directional solidification, a large number of linearly stable, patterned steady states exist when the basic, simple steady state is unstable. Which of these steady states will be realized in a given experiment appears to depend on unobservable details of the system's initial conditions. We show, however, that weak, Gaussian white noise drives such a system toward a preferred wave number which depends only on the system parameters and is independent of initial conditions. We give a prescription for calculating this wave number, analytically near the onset of instability and numerically otherwise.Comment: 12 pages, REVTEX, no figures. Submitted to Phys. Rev. Let

    Two Approaches to Dislocation Nucleation in the Supported Heteroepitaxial Equilibrium Islanding Phenomenon

    Full text link
    We study the dislocation formation in 2D nanoscopic islands with two methods, the Molecular Static method and the Phase Field Crystal method. It is found that both methods indicate the same qualitative stages of the nucleation process. The dislocations nucleate at the film-substrate contact point and the energy decreases monotonously when the dislocations are farther away from the island-wetting film contact points than the distance of the highest energy barrier.Comment: 4 page

    Dynamic scaling and quasi-ordered states in the two dimensional Swift-Hohenberg equation

    Full text link
    The process of pattern formation in the two dimensional Swift-Hohenberg equation is examined through numerical and analytic methods. Dynamic scaling relationships are developed for the collective ordering of convective rolls in the limit of infinite aspect ratio. The stationary solutions are shown to be strongly influenced by the strength of noise. Stationary states for small and large noise strengths appear to be quasi-ordered and disordered respectively. The dynamics of ordering from an initially inhomogeneous state is very slow in the former case and fast in the latter. Both numerical and analytic calculations indicate that the slow dynamics can be characterized by a simple scaling relationship, with a characteristic dynamic exponent of 1/41/4 in the intermediate time regime

    Genetic Composition of Laboratory Stocks of the Self-Fertilizing Fish Kryptolebias marmoratus: A Valuable Resource for Experimental Research

    Get PDF
    The hermaphroditic Mangrove Killifish, Kryptolebias marmoratus, is the world's only vertebrate that routinely self-fertilizes. As such, highly inbred and presumably isogenic “clonal” lineages of this androdioecious species have long been maintained in several laboratories and used in a wide variety of experiments that require genetically uniform vertebrate specimens. Here we conduct a genetic inventory of essentially all laboratory stocks of the Mangrove Killifish held worldwide. At 32 microsatellite loci, these stocks proved to show extensive interline differentiation as well as some intraline variation, much of which can be attributed to post-origin de novo mutations and/or to the segregation of polymorphisms from wild progenitors. Our genetic findings also document that many of the surveyed laboratory strains are not what they have been labeled, apparently due to the rather frequent mishandling or unintended mixing of various laboratory stocks over the years. Our genetic inventory should help to clarify much of this confusion about the clonal identities and genetic relationships of laboratory lines, and thereby help to rejuvenate interest in K. marmoratus as a reliable vertebrate model for experimental research that requires or can capitalize upon “clonal” replicate specimens

    Optical interconnect solution with plasmonic modulator and Ge photodetector array

    Get PDF
    We report on an optical chip-to-chip interconnect solution, thereby demonstrating plasmonics as a solution for ultra-dense, high-speed short-reach communications. The interconnect comprises a densely integrated plasmonic Mach-Zehnder modulator array that is packaged with standard driving electronics. On the receiver side, a germanium photodetector array is integrated with trans-impedance amplifiers. A multicore fiber provides a compact optical interface to the array. We demonstrate 4 × 20 Gb/s on-off keying signaling with direct detection.ISSN:1041-1135ISSN:1941-017

    Microscopic theory of network glasses

    Get PDF
    A molecular theory of the glass transition of network forming liquids is developed using a combination of self-consistent phonon and liquid state approaches. Both the dynamical transition and the entropy crisis characteristic of random first order transitions are mapped out as a function of the degree of bonding and the density. Using a scaling relation for a soft-core model to crudely translate the densities into temperatures, the theory predicts that the ratio of the dynamical transition temperature to the laboratory transition temperature rises as the degree of bonding increases, while the Kauzmann temperature falls relative to the laboratory transition. These results indicate why highly coordinated liquids should be "strong" while van der Waals liquids without coordination are "fragile".Comment: slightly revised version that has been accepted for publication in Phys. Rev. Let
    corecore