16 research outputs found

    Opportunities and Limitations of Mobile Neuroimaging Technologies in Educational Neuroscience.

    Get PDF
    Funder: European Association for Research on Learning and InstructionFunder: Jacobs Foundation; Id: http://dx.doi.org/10.13039/501100003986As the field of educational neuroscience continues to grow, questions have emerged regarding the ecological validity and applicability of this research to educational practice. Recent advances in mobile neuroimaging technologies have made it possible to conduct neuroscientific studies directly in naturalistic learning environments. We propose that embedding mobile neuroimaging research in a cycle (Matusz, Dikker, Huth, & Perrodin, 2019), involving lab-based, seminaturalistic, and fully naturalistic experiments, is well suited for addressing educational questions. With this review, we take a cautious approach, by discussing the valuable insights that can be gained from mobile neuroimaging technology, including electroencephalography and functional near-infrared spectroscopy, as well as the challenges posed by bringing neuroscientific methods into the classroom. Research paradigms used alongside mobile neuroimaging technology vary considerably. To illustrate this point, studies are discussed with increasingly naturalistic designs. We conclude with several ethical considerations that should be taken into account in this unique area of research

    Neural tracking of spontaneous speech

    No full text
    The data described in the manuscript titled “Um…, it’s really difficult to... um… speak fluently”: Neural tracking of spontaneous speech, by G. Agmon G., M. Jaeger, R. Tsarfaty, M. B. Bleichner & E. Zion Golumbic (Neurobiology of Language, 2023). In this EEG study, we showed that neural responses recorded while listening to spontaneous speech are affected by the presence of fillers in speech, sentence boundaries and speech rate. The Praat file contains the narrative that we used in this study (Hebrew) and the annotations that were used as regressors. Regressors are also provided in .csv format

    Low-Frequency Cortical Oscillations Entrain to Subthreshold Rhythmic Auditory Stimuli

    Get PDF
    Many environmental stimuli contain temporal regularities, a feature which can help predict forthcoming input. Phase-locking (entrainment) of ongoing low-frequency neuronal oscillations to rhythmic stimuli is proposed as a potential mechanism for enhancing neuronal responses and perceptual sensitivity, by aligning high-excitability phases to events within a stimulus stream. Previous experiments show that rhythmic structure has a behavioral benefit even when the rhythm itself is below perceptual detection thresholds (Ten Oever et al., 2014). It is not known whether this "inaudible" rhythmic sound stream also induces entrainment. Here we tested this hypothesis using magnetoencephalography (MEG) and electrocorticography (ECoG) in humans to record changes in neuronal activity as subthreshold rhythmic stimuli gradually became audible. We found that significant phase-locking to the rhythmic sounds preceded participants' detection of them. Moreover, no significant auditory-evoked responses accompanied this pre-threshold entrainment. These auditory-evoked responses, distinguished by robust, broad-band increases in inter-trial coherence (ITC), only appeared after sounds were reported as audible. Taken together with the reduced perceptual thresholds observed for rhythmic sequences, these findings support the proposition that entrainment of low-frequency oscillations serves a mechanistic role in enhancing perceptual sensitivity for temporally-predictive sounds. This framework has broad implications for understanding the neural mechanisms involved in generating temporal predictions and their relevance for perception, attention, and awareness.SIGNIFICANCE STATEMENTThe environment is full of rhythmically structured signals that the nervous system can exploit for information processing. Thus it is important to understand how the brain processes such temporally structured, regular features of external stimuli. Here we report the alignment of slowly fluctuating oscillatory brain activity to external rhythmic structure prior to its behavioral detection. These results indicate that phase alignment is a general mechanism of the brain to process rhythmic structure, and can occur without the perceptual detection of this temporal structure

    Crossmodal phase reset and evoked responses provide complementary mechanisms for the influence of visual speech in auditory cortex

    No full text
    Natural conversation is multisensory: when we can see the speaker's face, visual speech cues improve our comprehension. The neuronal mechanisms underlying this phenomenon remain unclear. The two main alternatives are visually-mediated phase modulation of neuronal oscillations (excitability fluctuations) in auditory neurons and visual input-evoked responses in auditory neurons. Investigating this question using naturalistic audiovisual speech with intracranial recordings in humans of both sexes, we find evidence for both mechanisms. Remarkably, auditory cortical neurons track the temporal dynamics of purely visual speech using the phase of their slow oscillations and phase-related modulations in broadband high-frequency activity. Consistent with known perceptual enhancement effects, the visual phase reset amplifies the cortical representation of concomitant auditory speech. In contrast to this, and in line with earlier reports, visual input reduces the amplitude of evoked responses to concomitant auditory input. We interpret the combination of improved phase tracking and reduced response amplitude as evidence for more efficient and reliable stimulus processing in the presence of congruent auditory and visual speech inputs.SIGNIFICANCE STATEMENTWatching the speaker can facilitate our understanding of what is being said. The mechanisms responsible for this influence of visual cues on the processing of speech remain incompletely understood. We studied these mechanisms by recording the human brain's electrical activity through electrodes implanted surgically inside the brain. We found that visual inputs can operate by directly activating auditory cortical areas, and also indirectly by modulating the strength of cortical responses to auditory input. Our results help to understand the mechanisms by which the brain merges auditory and visual speech into a unitary perception

    Opportunities and Limitations of Mobile Neuroimaging Technologies in Educational Neuroscience

    No full text
    As the field of educational neuroscience continues to grow, questions have emerged regarding the ecological validity and applicability of this research to educational practice. Recent advances in mobile neuroimaging technologies have made it possible to conduct neuroscientific studies directly in naturalistic learning environments. We propose that embedding mobile neuroimaging research in a cycle (Matusz, Dikker, Huth, & Perrodin, 2019), involving lab-based, seminaturalistic, and fully naturalistic experiments, is well suited for addressing educational questions. With this review, we take a cautious approach, by discussing the valuable insights that can be gained from mobile neuroimaging technology, including electroencephalography and functional near-infrared spectroscopy, as well as the challenges posed by bringing neuroscientific methods into the classroom. Research paradigms used alongside mobile neuroimaging technology vary considerably. To illustrate this point, studies are discussed with increasingly naturalistic designs. We conclude with several ethical considerations that should be taken into account in this unique area of research
    corecore