2,505 research outputs found

    Fracture Resistance and Microleakage of Endocrowns Utilizing Three CAD-CAM Blocks

    Get PDF
    This study assessed marginal leakage and fracture resistance of computer-aided design/computer-aided manufacturing (CAD/CAM) fabricated ceramic crowns with intracoronal extensions into the pulp chambers of endodontically treated teeth (endocrowns) using either feldspathic porcelain (CEREC Blocks [CB], Sirona Dental Systems GmbH, Bensheim, Germany), lithium disilicate (e.max [EX], Ivoclar Vivadent, Schaan, Liechtenstein), or resin nanoceramic (Lava Ultimate [LU], 3M ESPE, St Paul, MN, USA).). Thirty extracted human permanent maxillary molars were endodontically treated. Standardized preparations were done with 2-mm intracoronal extensions of the endocrowns into the pulp chamber. Teeth were divided into three groups (n=10); each group was restored with standardized CAD/CAM fabricated endocrowns using one of the three tested materials. After cementation with resin cement, specimens were stored in distilled water at 37°C for one week, subjected to thermocycling, and immersed in a 5% methylene-blue dye solution for 24 hours. A compressive load was applied at 35 degrees to long axis of the teeth using a universal testing machine until failure. Failure load was recorded, and specimens were examined under a stereomicroscope for modes of failure and microleakage. Results were analyzed using one-way analysis of variance and Bonferroni post hoc multiple comparison tests (α=0.05). LU showed significantly (p<0.05) higher fracture resistance and more favorable fracture mode (ie, fracture of the endocrown without fracture of tooth) as well as higher dye penetration than CB and EX. In conclusion, although using resin nanoceramic blocks for fabrication of endocrowns may result in better fracture resistance and a more favorable fracture mode than other investigated ceramic blocks, more microleakage may be expected with this material

    Dynamic studies of biomimetic coated polycaprolactone nanofiber meshes as bone extracellular matrix analogues

    Get PDF
    This work aimed at studying the effects of dynamic culture conditions and biomimetic coating on bone cells grown on nanofiber meshes. In our previous work, biomimetic calcium phosphate coated polycaprolactone nanofibre meshes (BCP-NM) proved to be more efficient for supporting cell attachment and proliferation under static conditions, when compared to polycaprolactone nanofibre meshe (PCL-NM). However, no studies on the influence of bioreactors on the behaviour of cells cultivated on these materials were developed so far. [...]info:eu-repo/semantics/publishedVersio

    Immobilization of Wnt Fragment Peptides on Magnetic Nanoparticles or Synthetic Surfaces Regulate Wnt Signaling Kinetics.

    Get PDF
    Wnt signaling plays an important role in embryogenesis and adult stem cell homeostasis. Its diminished activation is implicated in osteoporosis and degenerative neural diseases. However, systematic administration of Wnt-signaling agonists carries risk, as aberrantly activated Wnt/β-catenin signaling is linked to cancer. Therefore, technologies for local modulation and control of Wnt signaling targeted to specific sites of disease or degeneration have potential therapeutic value in the treatment of degenerative diseases. We reported a facile approach to locally activate the canonical Wnt signaling cascade using nanomagnetic actuation or ligand immobilized platforms. Using a human embryonic kidney (HEK293) Luc-TCF/LEF reporter cell line, we demonstrated that targeting the cell membrane Wnt receptor, Frizzled 2, with peptide-tagged magnetic nanoparticles (MNPs) triggered canonical Wnt signaling transduction when exposed to a high-gradient, time-varying magnetic field, and the induced TCF/LEF signal transduction was shown to be avidity-dependent. We also demonstrated that the peptide retained signaling activity after functionalization onto glass surfaces, providing a versatile platform for drug discovery or recreation of the cell niche. In conclusion, these results showed that peptide-mediated Wnt signaling kinetics depended not only on ligand concentration but also on the presentation method of the ligand, which may be further modulated by magnetic actuation. This has important implications when designing future therapeutic platforms involving Wnt mimetics

    The effect of reverse current on the dark properties of photovoltaic solar modules

    Get PDF
    AbstractForward and reverse dark current-voltage (I-V) and capacitance-voltage (C-V) characteristics of commercial amorphous silicon solar modules, were measured in order to study their performance under the influence of induced reverse currents. Maximum module surface temperatures were directly related to each value of the induced reverse current and in to the amount of current leakage respectively. Microscopic changes as a result of hot spots defects and overheating of the solar module, linked to reverse current effects, were also documented and discussed. Experimental evidence showed that different levels of reverse currents are confirmed to be a major degrading factor affecting the performance, efficiency, and power of solar modules

    Dynamic culture of osteogenic cells in biomimetically coated poly(caprolactone) nanofibre mesh constructs

    Get PDF
    In our previous work, biomimetic calcium phosphate-coated poly(caprolactone) nanofibre meshes (BCP-NMs) were demonstrated to be more effective for supporting cell attachment and proliferation under static conditions, when compared with poly(caprolactone) nanofibre meshes (PCL-NMs). In many applications, in vitro cultivation of constructs using bioreactors that support efficient nutrition of cells has appeared as an important step toward the development of functional grafts. This work aimed at studying the effects of dynamic culture conditions and biomimetic coating on bone cells grown on the nanofibre meshes. BCP-NM and PCL-NM were seeded with osteoblast-like cells (MG63--human osteosarcoma-derived cell line). The cell-seeded constructs were cultured within a rotating bioreactor that simulated microgravity, at a fixed rotating speed, for different time periods, and then characterized. Cell morphology, viability, and phenotype were assessed. PCL-NM constructs presented a higher number of dead cells than BCP-NM constructs. Under dynamic conditions, the production of proteins associated with the extracellular matrix of bone was higher on BCP-NM constructs than in the PCL-NM ones, which indicates that coated samples may provide cells with a better environment for tissue growth. It is suggested that improved mass transfer in the bioreactor in combination with the appropriate substrate were decisive factors for this highly positive outcome for generating bone.This work was developed under the scope of the EU Project Network of Excellence "Expertissues'' (NMP3-CT-2004-500283) and supported by Alea jacta est Marie Curie Actions (MEST-CT-2004-008104). M. Alves da Silva would like to acknowledge the Portuguese Foundation for Science and Technology for her grant (SFRH-BD-28708-2006). Jose V. Araujo is grateful to S. Rathbone, H. Sura, I. Wimpenny, I. Dublon, G. Jones, and E. D. Pinho for useful technical discussions

    Music causes deterioration of source memory: Evidence from normal ageing

    Get PDF
    Previous research shows that music exposure can impair a wide variety of cognitive and behavioral performance. We investigated whether this is the case for source memory. Forty-one younger adults and thirty-five healthy elderly were required to retain the location in which pictures of colored objects were displayed. On a subsequent recognition test they were required to decide whether the objects were displayed in the same location as before or not. Encoding took place 1) in silence, 2) while listening to street noise, or 3) while listening to Vivaldi’s “Four seasons”. Recognition always took place during silence. A significant reduction in source memory was observed following music exposure, a reduction that was more pronounced for older adults than for younger adults. This pattern was significantly correlated with performance on an executive binding task. The exposure to music appeared to interfere with binding in working memory, worsening source recall

    Understanding how, why, for whom, and under what circumstances opt-out blood-borne virus testing programmes work to increase test engagement and uptake within prison: a rapid-realist review

    Get PDF
    Background: Prisons represent a unique opportunity to diagnose blood-borne viruses. Opt-out testing is receiving increasing interest, as a result of mounting evidence to suggest that the manner in which a test offer is delivered, affects test uptake. Although the effectiveness of opt-out testing within the prison setting has been established, robust explanations are required for the variation in outcomes reported. Methods: Rapid-realist review methodology was used to synthesise the literature on prison-based opt-out testing. The review was carried out in three phases. Phase one: An expert panel provided literature relevant to the implementation of opt-out testing within the English prison estate. Unstructured searches were also conducted to identify other social programmes where “opt-out” had been used to increase uptake. Phase two: a systematic search of six peer-review and five grey literature databases was carried out to identify empirical data on opt-out testing within the prison setting. Phase three: Additional non-exhaustive searches were carried out to identify literature that reinforced emergent concepts. The development of programme theory took place with each iteration and was validated in consultation with stakeholders. Results: Programme theory was constructed for two outcomes: the proportion of intake offered a test and the proportion offered that accepted testing. The proportion of intake offered testing was influenced by the timing of the test offer, which was often delayed due to barriers to prisoner access. The decision to accept testing was influenced by concerns about confidentiality, fear of a positive diagnosis, a prisoner’s personal interpretation of risk, discomfort with invasive procedures, trust in healthcare, and the fidelity of the opt-out offer. Conclusions: This review identified important implementation considerations that moderate the effectiveness of opt-out testing programmes. It also highlighted a lack of appreciation for the theoretical underpinnings of opt-out programmes and tension around how to implement testing in a manner that adheres to both default theory and informed consent. It is anticipated that results will be used to inform the design and implementation of subsequent versions of these programmes, as well as catalyse further in-depth analysis into their operation within the unique context of prison. Review registration: CRD42017068342

    Parallelized Manipulation of Adherent Living Cells by Magnetic Nanoparticles-Mediated Forces

    Get PDF
    The remote actuation of cellular processes such as migration or neuronal outgrowth is a challenge for future therapeutic applications in regenerative medicine. Among the different methods that have been proposed, the use of magnetic nanoparticles appears to be promising, since magnetic fields can act at a distance without interactions with the surrounding biological system. To control biological processes at a subcellular spatial resolution, magnetic nanoparticles can be used either to induce biochemical reactions locally or to apply forces on different elements of the cell. Here, we show that cell migration and neurite outgrowth can be directed by the forces produced by a switchable parallelized array of micro-magnetic pillars, following the passive uptake of nanoparticles. Using live cell imaging, we first demonstrate that adherent cell migration can be biased toward magnetic pillars and that cells can be reversibly trapped onto these pillars. Second, using differentiated neuronal cells we were able to induce events of neurite outgrowth in the direction of the pillars without impending cell viability. Our results show that the range of forces applied needs to be adapted precisely to the cellular process under consideration. We propose that cellular actuation is the result of the force on the plasma membrane caused by magnetically filled endo-compartments, which exert a pulling force on the cell periphery

    WR279,396, a Third Generation Aminoglycoside Ointment for the Treatment of Leishmania major Cutaneous Leishmaniasis: A Phase 2, Randomized, Double Blind, Placebo Controlled Study

    Get PDF
    Cutaneous leishmaniasis is due to a small parasite (Leishmania) that creates disfiguring sores, and affects more than one million persons (mainly children) each year. Treating lesions with a cream—instead of with injections as currently done—would greatly improve the well-being of affected patients. No cream formulation that would be efficient and would not create important skin irritation has been identified yet. Here, we tested a new cream formulation (WR279,396) containing paromomycin and gentamicin, two members of a well-known family of antibacterial antibiotics (aminoglycosides). Injectable paromomycin is efficient in other forms of the disease (visceral leishmaniasis). This was a carefully monitored study (phase 2) involving mainly children in Tunisia and France. The cream was applied twice a day for 20 days. The proportion of patients treated with the paromomycin-containing cream (active formulation) that cured (94%) was higher than that observed (71%) in patients treated with a cream that did not contain the active product (placebo formulation). Local irritation affected less than one-third of the patients and was usually mild. This new cream formulation was safe and effective in treating cutaneous leishmaniasis, thereby providing a new, simple, easily applicable, and inexpensive treatment for this neglected disease
    corecore