76 research outputs found

    The function of yeast CAP family proteins in lipid export, mating, and pathogen defense

    Get PDF
    In their natural habitat, yeast cells are constantly challenged by changing environmental conditions and a fierce competition for limiting resources. To thrive under such conditions, cells need to adapt and divide quickly, and be able to neutralize the toxic compounds secreted by their neighbors. Proteins like the pathogen‐related yeast, Pry proteins, which belong to the large CAP/SCP/TAPS superfamily, may have an important role in this function. CAP proteins are conserved from yeast to man and are characterized by a unique αβα sandwich fold. They are mostly secreted glycoproteins and have been implicated in many different physiological processes including pathogen defense, virulence, venom toxicity, and sperm maturation. Yeast members of this family bind and export sterols as well as fatty acids, and they render cells resistant to eugenol, an antimicrobial compound present in clove oil. CAP family members might thus exert their various physiological functions through binding, sequestration, and neutralization of such small hydrophobic compounds

    Zinc-oxide charge trapping memory cell with ultra-thin chromium-oxide trapping layer

    Get PDF
    Cataloged from PDF version of article.A functional zinc-oxide based SONOS memory cell with ultra-thin chromium oxide trapping layer was fabricated. A 5 nm CrO2 layer is deposited between Atomic Layer Deposition (ALD) steps. A threshold voltage (Vt) shift of 2.6V was achieved with a 10V programming voltage. Also for a 2V Vt shift, the memory with CrO2 layer has a low programming voltage of 7.2V. Moreover, the deep trapping levels in CrO2 layer allows for additional scaling of the tunnel oxide due to an increase in the retention time. In addition, the structure was simulated using Physics Based TCAD. The results of the simulation fit very well with the experimental results providing an understanding of the charge trapping and tunneling physics. © 2013 Author(s

    Silicon nanoparticle charge trapping memory cell

    Get PDF
    Cataloged from PDF version of article.A charge trapping memory with 2 nm silicon nanoparticles (Si NPs) is demonstrated. A zinc oxide (ZnO) active layer is deposited by atomic layer deposition (ALD), preceded by Al2O3 which acts as the gate, blocking and tunneling oxide. Spin coating technique is used to deposit Si NPs across the sample between Al2O3 steps. The Si nanoparticle memory exhibits a threshold voltage (V-t) shift of 2.9 V at a negative programming voltage of -10 V indicating that holes are emitted from channel to charge trapping layer. The negligible measured V-t shift without the nanoparticles and the good retention of charges (> 10 years) with Si NPs confirm that the Si NPs act as deep energy states within the bandgap of the Al2O3 layer. In order to determine the mechanism for hole emission, we study the effect of the electric field across the tunnel oxide on the magnitude and trend of the V-t shift. The Vt shift is only achieved at electric fields above 1 MV/cm. This high field indicates that tunneling is the main mechanism. More specifically, phonon-assisted tunneling (PAT) dominates at electric fields between 1.2 MV/cm 2.1 MV/cm).(C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Enhanced memory effect with embedded graphene nanoplatelets in znO charge trapping layer

    Get PDF
    Cataloged from PDF version of article.A charge trapping memory with graphene nanoplatelets embedded in atomic layer deposited ZnO (GNIZ) is demonstrated. The memory shows a large threshold voltage Vt shift (4 V) at low operating voltage (6/-6 V), good retention (>10 yr), and good endurance characteristic (>104 cycles). This memory performance is compared to control devices with graphene nanoplatelets (or ZnO) and a thicker tunnel oxide. These structures showed a reduced Vt shift and retention characteristic. The GNIZ structure allows for scaling down the tunnel oxide thickness along with improving the memory window and retention of data. The larger Vt shift indicates that the ZnO adds available trap states and enhances the emission and retention of charges. The charge emission mechanism in the memory structures with graphene nanoplatelets at an electric field E ¥ 5.57 MV/cm is found to be based on Fowler-Nordheim tunneling. The fabrication of this memory device is compatible with current semiconductor processing, therefore, has great potential in low-cost nano-memory applications. © 2014 AIP Publishing LLC

    Charge trapping memory with 2.85-nm Si-nanoparticles embedded in HfO<inf>2</inf>

    Get PDF
    In this work, the effect of embedding 2.85-nm Si-nanoparticles charge trapping layer in between double layers of high-κ Al2O3/HfO2 oxides is studied. Using high frequency (1 MHz) C-Vgate measurements, the memory showed a large memory window at low program/erase voltages due to the charging of the Si-nanoparticles. The analysis of the C-V characteristics shows that mixed charges are being stored in the Si-nanoparticles where electrons get stored during the program operation while holes dominate in the Si-nanoparticles during the erase operation. Moreover, the retention characteristic of the memory is studied by measuring the memory hysteresis in time. The obtained retention characteristic (35.5% charge loss in 10 years) is due to the large conduction and valence band offsets between the Si-nanoparticles and the Al2O3/HfO2 tunnel oxide. The results show that band engineering is essential in future low-power non-volatile memory devices. In addition, the results show that Si-nanoparticles are promising in memory applications. © The Electrochemical Society

    Enhanced memory effect via quantum confinement in 16 nm InN nanoparticles embedded in ZnO charge trapping layer

    Get PDF
    Cataloged from PDF version of article.In this work, the fabrication of charge trapping memory cells with laser-synthesized indium-nitride nanoparticles (InN-NPs) embedded in ZnO charge trapping layer is demonstrated. Atomic layer deposited Al2O3 layers are used as tunnel and blocking oxides. The gate contacts are sputtered using a shadow mask which eliminates the need for any lithography steps. High frequency C-Vgate measurements show that a memory effect is observed, due to the charging of the InN-NPs. With a low operating voltage of 4 V, the memory shows a noticeable threshold voltage (Vt) shift of 2 V, which indicates that InN-NPs act as charge trapping centers. Without InN-NPs, the observed memory hysteresis is negligible. At higher programming voltages of 10 V, a memory window of 5 V is achieved and the Vt shift direction indicates that electrons tunnel from channel to charge storage layer. © 2014 AIP Publishing LL

    Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via Poole-Frenkel hole emission

    Get PDF
    A low power zinc-oxide (ZnO) charge trapping memory with embedded silicon (Si) nanoparticles is demonstrated. The charge trapping layer is formed by spin coating 2 nm silicon nanoparticles between Atomic Layer Deposited ZnO steps. The threshold voltage shift (ΔVt) vs. programming voltage is studied with and without the silicon nanoparticles. Applying -1 V for 5 s at the gate of the memory with nanoparticles results in a ΔVt of 3.4 V, and the memory window can be up to 8 V with an excellent retention characteristic (&gt;10 yr). Without nanoparticles, at -1 V programming voltage, the ΔVt is negligible. In order to get ΔVt of 3.4 V without nanoparticles, programming voltage in excess of 10 V is required. The negative voltage on the gate programs the memory indicating that holes are being trapped in the charge trapping layer. In addition, at 1 V the electric field across the 3.6 nm tunnel oxide is calculated to be 0.36 MV/cm, which is too small for significant tunneling. Moreover, the ΔVt vs. electric field across the tunnel oxide shows square root dependence at low fields (E 1 MV/cm) and a square dependence at higher fields (E &gt; 2.7 MV/cm). This indicates that Poole-Frenkel Effect is the main mechanism for holes emission at low fields and Phonon Assisted Tunneling at higher fields. © 2014 AIP Publishing LLC

    2-nm laser-synthesized Si nanoparticles for low-power charge trapping memory devices

    Get PDF
    In this work, the effect of embedding Silicon Nanoparticles (Si-NPs) in ZnO based charge trapping memory devices is studied. Si-NPs are fabricated by laser ablation of a silicon wafer in deionized water followed by sonication and filtration. The active layer of the memory was deposited by Atomic Layer Deposition (ALD) and spin coating technique was used to deliver the Si-NPs across the sample. The nanoparticles provided a good retention of charges (&gt;10 years) in the memory cells and allowed for a large threshold voltage (Vt) shift (3.4 V) at reduced programming voltages (1 V). The addition of ZnO to the charge trapping media enhanced the electric field across the tunnel oxide and allowed for larger memory window at lower operating voltages. © 2014 IEEE

    Plant pathogenesis-related proteins of the cacao fungal pathogen Moniliophthora perniciosa differ in their lipid-binding specificities

    Get PDF
    Moniliophthora perniciosa is the causative agent of witches' broom disease, which devastates cacao cultures in South America. This pathogenic fungus infects meristematic tissues and derives nutrients from the plant apoplast during an unusually long-lasting biotrophic stage. In order to survive, the fungus produces proteins to suppress the plant immune response. Proteins of the Pathogenesis Related 1 (PR- 1)/CAP superfamily have been implicated in fungal virulence and immune suppression. The genome of M. perniciosa encodes eleven homologues of plant PR-1 proteins, designated MpPR-1 proteins, but their precise mode of action is poorly understood. In this study, we expressed MpPR-1 proteins in a yeast model lacking endogenous CAP proteins. We show that some members of the MpPR-1 family bind and promote secretion of sterols whereas others bind and promote secretion of fatty acids. Lipid-binding by purified MpPR-1 occurs with micromolar affinity and is saturable in vitro. Sterol binding by MpPR-1 requires the presence of a flexible loop region containing aromatic amino acids, the caveolin-binding motif. Remarkably, MpPR-1 family members that do not bind sterols can be converted to sterol binders by a single point mutation in the caveolin-binding motif. We discuss the possible implications of the lipid-binding activity of MpPR-1 family members with regard to the mode of action of these proteins during M. perniciosa infections
    corecore