95 research outputs found

    Radiation-Spray Coupling for Realistic Flow Configurations

    Get PDF
    Three Large Eddy Simulations (LES) for a lean-direct injection (LDI) combustor are performed and compared. In addition to the cold flow simulation, the effect of radiation coupling with the multi-physics reactive flow is analyzed. The flame let progress variable approach is used as a subgrid combustion model combined with a stochastic subgrid model for spray atomization and an optically thin radiation model. For accurate chemistry modeling, a detailed Jet-A surrogate mechanism is utilized. To achieve realistic inflow, a simple recycling technique is performed at the inflow section upstream of the swirler. Good comparison is shown with the experimental data mean and root mean square profiles. The effect of combustion is found to change the shape and size of the central recirculation zone. Radiation is found to change the spray dynamics and atomization by changing the heat release distribution and the local temperature values impacting the evaporation process. The simulation with radiation modeling shows wider range of droplet size distribution by altering the evaporation rate. The current study proves the importance of radiation modeling for accurate prediction in realistic spray combustion configurations, even for low pressure systems

    Determining the causes of recessive retinal dystrophy

    Get PDF
    Inherited retinal dystrophies (RDs) are a clinically heterogeneous group of eye diseases that result from mutations in more than 250 genes. Genetic diagnosis of these diseases has, until recently, been hampered by the lack of suitable technologies to perform high throughput screening. This thesis describes two different strategies for using next generation sequencing (NGS) in RD patients to find the pathogenic mutation(s) involved. In the first results chapter, a customised capture reagent (called Retinome) designed against the known retinal dystrophy genes (RetNet, June 2010) was used in NGS analysis of 20 RD families. The disease-causing mutations were identified in 12 of 20 cases (60%). These included previously reported mutations in ABCA4 (c.6088C>T, p.R2030*; c.5882G>A, p.G1961E), RDH12 (c.601T>C, p.C201R; c.506G>A, p.R169Q), PROM1 (c.1117C>T, p.R373C), GUCY2D (c.2512C>T, p.R838C), RPGRIP1 (c.3565C>T, p.R1189*), BBS2 (c.1895G>C, p.R632P) and SPATA7 (c.253C>T, p.R85*) and new mutations in CRB1 (c.2832_2842+23del), USH2A (c.12874A>G, p.N4292D), RP2 (c.884-1G>T) and ABCA4 (c.3328+1G>C). In eight cases the causative mutation could not be unambiguously identified. In the second results chapter, whole-exome NGS was performed on five RD families that had been pre-screened with the Retinome reagent. This identified mutations in three known RD genes, MFSD8 (c.1006G>C, p.E336Q; c.1394G>A, p.R465Q), C8orf37 (c.555G>A, p.W185*) and TTLL5 (c.1627G>A, p.E543K), and mutations in two potentially new RD genes, LARGE (c.2089G>T, p.V697L) and FDFT1 (c.930C>G, p.F310L). In the third results chapter, whole-exome NGS was performed, without pre-screening of known genes, in a family with atypical adult-onset RD with early macular involvement. NGS identified a mutation in a novel RD gene, DRAM2 (c.140delG, p.G47Vfs*3). Further DRAM2 screening in DNA panels identified a compound heterozygote case (c.494G>A, p.W165*; c.131G>A, p.S44N). DRAM2 was localised to the photoreceptor inner segment and retinal pigment epithelium. The relative merits of each approach are discussed. Identifying the pathogenic mutation facilitates counselling, carrier testing and may lead to a clearer prognosis. It may also influence future prospects for these families as new treatments become available

    New missense variants in RELT causing hypomineralised amelogenesis imperfecta

    Get PDF
    Amelogenesis imperfecta (AI) is a heterogeneous group of genetic diseases characterised by dental enamel malformation. Pathogenic variants in at least 33 genes cause syndromic or non‐syndromic AI. Recently variants in RELT, encoding an orphan receptor in the tumour necrosis factor (TNF) superfamily, were found to cause recessive AI, as part of a syndrome encompassing small stature and severe childhood infections. Here we describe four additional families with autosomal recessive hypomineralised AI due to previously unreported homozygous mutations in RELT. Three families carried a homozygous missense variant in the fourth exon (c.164C > T, p.[T55I]) and a fourth family carried a homozygous missense variant in the 11th exon (c.1264C > T, p.[R422W]). We found no evidence of additional syndromic symptoms in affected individuals. Analyses of tooth microstructure with computerized tomography and scanning electron microscopy suggest a role for RELT in ameloblasts' coordination and interaction with the enamel matrix. Microsatellite genotyping in families segregating the T55I variant reveals a shared founder haplotype. These findings extend the RELT pathogenic variant spectrum, reveal a founder mutation in the UK Pakistani population and provide detailed analysis of human teeth affected by this hypomineralised phenotype, but do not support a possible syndromic presentation in all those with RELT‐variant associated AI

    The ciliary Frizzled-like receptor Tmem67 regulates canonical Wnt/β-catenin signalling in the developing cerebellum via Hoxb5

    Get PDF
    Primary cilia defects result in a group of related pleiotropic malformation syndromes known as ciliopathies, often characterised by cerebellar developmental and foliation defects. Here, we describe the cerebellar anatomical and signalling defects in the Tmem67tm1(Dgen)/H knockout mouse. At mid-gestation, Tmem67 mutant cerebella were hypoplastic and had aberrantly high canonical Wnt/β-catenin signalling, proliferation and apoptosis. Later in development, mutant cerebellar hemispheres had severe foliation defects and inferior lobe malformation, characterized by immature Purkinje cells (PCs). Early postnatal Tmem67 mutant cerebellum had disrupted ciliogenesis and reduced responsiveness to Shh signalling. Transcriptome profiling of Tmem67 mutant cerebella identified ectopic increased expression of homeobox-type transcription factors (Hoxa5, Hoxa4, Hoxb5 and Hoxd3), normally required for early rostral hindbrain patterning. HOXB5 protein levels were increased in the inferior lobe, and increased canonical Wnt signalling, following loss of TMEM67, was dependent on HOXB5. HOXB5 occupancy at the β-catenin promoter was significantly increased by activation of canonical Wnt signalling in Tmem67−/− mutant cerebellar neurones, suggesting that increased canonical Wnt signalling following mutation or loss of TMEM67 was directly dependent on HOXB5. Our results link dysregulated expression of Hox group genes with ciliary Wnt signalling defects in the developing cerebellum, providing new mechanistic insights into ciliopathy cerebellar hypoplasia phenotypes

    Novel homozygous mutations in the transcription factor NRL cause non-syndromic retinitis pigmentosa

    Get PDF
    Purpose: To describe the clinical phenotype and genetic basis of non-syndromic retinitis pigmentosa (RP) in one family and two sporadic cases with biallelic mutations in the transcription factor neural retina leucine zipper (NRL). Methods: Exome sequencing was performed in one affected family member. Microsatellite genotyping was used for haplotype analysis. PCR and Sanger sequencing were used to confirm mutations in and screen other family members where they were available. The SMART tool for domain prediction helped us build the protein schematic diagram. Results: For family MM1 of Pakistani origin, whole-exome sequencing and microsatellite genotyping revealed homozygosity on chromosome 14 and identified a homozygous stop-loss mutation in NRL, NM_006177.5: c.713G>T, p.*238Lext57, which is predicted to add an extra 57 amino acids to the normal protein chain. The variant segregated with disease symptoms in the family. For case RP-3051 of Spanish ancestry, clinical exome sequencing focusing on the morbid genome highlighted a homozygous nonsense mutation in NRL, c.238C>T, p.Gln80*, as the most likely disease candidate. For case RP-1553 of Romanian ethnicity, targeted-exome sequencing of 73 RP/LCA genes identified a homozygous nonsense mutation in NRL, c.544C>T, p.Gln182*. The variants were either rare or absent in the gnomAD database. Conclusions: NRL mutations predominantly cause dominant retinal disease, but there have been five published reports of mutations causing recessive disease. Here, we present three further examples of recessive RP due to NRL mutations. The phenotypes observed are consistent with those in the previous reports, and the observed mutation types and distribution further confirm distinct patterns for variants in NRL causing recessive and dominant diseases

    Novel C8orf37 mutations cause retinitis pigmentosa in consanguineous families of Pakistani origin

    Get PDF
    Purpose: To investigate the molecular basis of retinitis pigmentosa in two consanguineous families of Pakistani origin with multiple affected members. Methods: Homozygosity mapping and Sanger sequencing of candidate genes were performed in one family while the other was analyzed with whole exome next-generation sequencing. A minigene splicing assay was used to confirm the splicing defects. Results: In family MA48, a novel homozygous nucleotide substitution in C8orf37, c.244–2A>C, that disrupted the consensus splice acceptor site of exon 3 was found. The minigene splicing assay revealed that this mutation activated a cryptic splice site within exon 3, causing a 22 bp deletion in the transcript that is predicted to lead to a frameshift followed by premature protein truncation. In family MA13, a novel homozygous null mutation in C8orf37, c.555G>A, p.W185*, was identified. Both mutations segregated with the disease phenotype as expected in a recessive manner and were absent in 8,244 unrelated individuals of South Asian origin. Conclusions: In this report, we describe C8orf37 mutations that cause retinal dystrophy in two families of Pakistani origin, contributing further data on the phenotype and the spectrum of mutations in this form of retinitis pigmentosa

    Specific Alleles of CLN7/MFSD8, a Protein That Localizes to Photoreceptor Synaptic Terminals, Cause a Spectrum of Nonsyndromic Retinal Dystrophy

    Get PDF
    Purpose: Recessive mutations in CLN7/MFSD8 usually cause variant late-infantile onset neuronal ceroid lipofuscinosis (vLINCL), a poorly understood neurodegenerative condition, though mutations may also cause nonsyndromic maculopathy. A series of 12 patients with nonsyndromic retinopathy due to novel CLN7/MFSD8 mutation combinations were investigated in this study. Methods: Affected patients and their family members were recruited in ophthalmic clinics at each center where they were examined by retinal imaging and detailed electrophysiology. Whole exome or genome next generation sequencing was performed on genomic DNA from at least one affected family member. Immunofluorescence confocal microscopy of murine retina cross-sections were used to localize the protein. Results: Compound heterozygous alleles were identified in six cases, one of which was always p.Glu336Gln. Such combinations resulted in isolated macular disease. Six further cases were homozygous for the variant p.Met454Thr, identified as a founder mutation of South Asian origin. Those patients had widespread generalized retinal disease, characterized by electroretinography as a rod-cone dystrophy with severe macular involvement. In addition, the photopic single flash electroretinograms demonstrated a reduced b- to a-wave amplitude ratio, suggesting dysfunction occurring after phototransduction. Immunohistology identified MFSD8 in the outer plexiform layer of the retina, a site rich in photoreceptor synapses. Conclusions: This study highlights a hierarchy of MFSD8 variant severity, predicting three consequences of mutation: (1) nonsyndromic localized maculopathy, (2) nonsyndromic widespread retinopathy, or (3) syndromic neurological disease. The data also shed light on the underlying pathogenesis by implicating the photoreceptor synaptic terminals as the major site of retinal disease

    The analysis of gut microbiota in patients with bile acid diarrhoea treated with colesevelam

    Get PDF
    © 2023 The Authors. Published by Frontiers Media. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3389/fmicb.2023.1134105Introduction: Bile acid diarrhoea (BAD) is a common disorder that results from an increased loss of primary bile acids and can result in a change in microbiome. The aims of this study were to characterise the microbiome in different cohorts of patients with BAD and to determine if treatment with a bile acid sequestrant, colesevelam, can alter the microbiome and improve microbial diversity. Materials and methods: Patients with symptoms of diarrhoea underwent 75-selenium homocholic acid (75SeHCAT) testing and were categorised into four cohorts: idiopathic BAD, post-cholecystectomy BAD, post-operative Crohn’s disease BAD and 75SeHCAT negative control group. Patients with a positive 75SeHCAT (<15%) were given a trial of treatment with colesevelam. Stool samples were collected pre-treatment, 4-weeks, 8-weeks and 6–12 months post-treatment. Faecal 16S ribosomal RNA gene analysis was undertaken. Results: A total of 257 samples were analysed from 134 patients. α-diversity was significantly reduced in patients with BAD and more specifically, in the idiopathic BAD cohort and in patients with severe disease (SeHCAT <5%); p < 0.05. Colesevelam did not alter bacterial α/β-diversity but patients who clinically responded to treatment had a significantly greater abundance of Fusobacteria and Ruminococcus, both of which aid in the conversion of primary to secondary bile acids. Conclusion: This is the first study to examine treatment effects on the microbiome in BAD, which demonstrated a possible association with colesevelam on the microbiome through bile acid modulation in clinical responders. Larger studies are now needed to establish a causal relationship with colesevelam and the inter-crosstalk between bile acids and the microbiome.The research department of MB received project funding from Bowel and Cancer Research for part of this work. The research department of MB received project funding from an unrestricted grant from Tillotts Pharma for part of this work.Published versio
    corecore