114 research outputs found

    Activation of MAPK signalling results in resistance to saracatinib (AZD0530) in ovarian cancer

    Get PDF
    SRC tyrosine kinase is frequently overexpressed and activated in late-stage, poor prognosis ovarian tumours, and preclinical studies have supported the use of targeted SRC inhibitors in the treatment of this disease. The SAPPROC trial investigated the addition of the SRC inhibitor saracatinib (AZD0530) to weekly paclitaxel for the treatment of platinum resistant ovarian cancer; however, this drug combination did not provide any benefit to progression free survival (PFS) of women with platinum resistant disease. In this study we aimed to identify mechanisms of resistance to SRC inhibitors in ovarian cancer cells. Using two complementary strategies; a targeted tumour suppressor gene siRNA screen, and a phospho-receptor tyrosine kinase array, we demonstrate that activation of MAPK signalling, via a reduction in NF1 (neurofibromin) expression or overexpression of HER2 and the insulin receptor, can drive resistance to AZD0530. Knockdown of NF1 in two ovarian cancer cell lines resulted in resistance to AZD0530, and was accompanied with activated MEK and ERK signalling. We also show that silencing of HER2 and the insulin receptor can partially resensitize AZD0530 resistant cells, which was associated with decreased phosphorylation of MEK and ERK. Furthermore, we demonstrate a synergistic effect of combining SRC and MEK inhibitors in both AZD0530 sensitive and resistant cells, and that MEK inhibition is sufficient to completely resensitize AZD0530 resistant cells. This work provides a preclinical rationale for the combination of SRC and MEK inhibitors in the treatment of ovarian cancer, and also highlights the need for biomarker driven patient selection for clinical trials

    Activation of MAPK signalling results in resistance to saracatinib (AZD0530) in ovarian cancer

    Get PDF
    SRC tyrosine kinase is frequently overexpressed and activated in late-stage, poor prognosis ovarian tumours, and preclinical studies have supported the use of targeted SRC inhibitors in the treatment of this disease. The SAPPROC trial investigated the addition of the SRC inhibitor saracatinib (AZD0530) to weekly paclitaxel for the treatment of platinum resistant ovarian cancer; however, this drug combination did not provide any benefit to progression free survival (PFS) of women with platinum resistant disease. In this study we aimed to identify mechanisms of resistance to SRC inhibitors in ovarian cancer cells. Using two complementary strategies; a targeted tumour suppressor gene siRNA screen, and a phospho-receptor tyrosine kinase array, we demonstrate that activation of MAPK signalling, via a reduction in NF1 (neurofibromin) expression or overexpression of HER2 and the insulin receptor, can drive resistance to AZD0530. Knockdown of NF1 in two ovarian cancer cell lines resulted in resistance to AZD0530, and was accompanied with activated MEK and ERK signalling. We also show that silencing of HER2 and the insulin receptor can partially resensitize AZD0530 resistant cells, which was associated with decreased phosphorylation of MEK and ERK. Furthermore, we demonstrate a synergistic effect of combining SRC and MEK inhibitors in both AZD0530 sensitive and resistant cells, and that MEK inhibition is sufficient to completely resensitize AZD0530 resistant cells. This work provides a preclinical rationale for the combination of SRC and MEK inhibitors in the treatment of ovarian cancer, and also highlights the need for biomarker driven patient selection for clinical trials

    Activation of MAPK signalling results in resistance to saracatinib (AZD0530) in ovarian cancer

    Get PDF
    SRC tyrosine kinase is frequently overexpressed and activated in late-stage, poor prognosis ovarian tumours, and preclinical studies have supported the use of targeted SRC inhibitors in the treatment of this disease. The SAPPROC trial investigated the addition of the SRC inhibitor saracatinib (AZD0530) to weekly paclitaxel for the treatment of platinum resistant ovarian cancer; however, this drug combination did not provide any benefit to progression free survival (PFS) of women with platinum resistant disease. In this study we aimed to identify mechanisms of resistance to SRC inhibitors in ovarian cancer cells. Using two complementary strategies; a targeted tumour suppressor gene siRNA screen, and a phospho-receptor tyrosine kinase array, we demonstrate that activation of MAPK signalling, via a reduction in NF1 (neurofibromin) expression or overexpression of HER2 and the insulin receptor, can drive resistance to AZD0530. Knockdown of NF1 in two ovarian cancer cell lines resulted in resistance to AZD0530, and was accompanied with activated MEK and ERK signalling. We also show that silencing of HER2 and the insulin receptor can partially resensitize AZD0530 resistant cells, which was associated with decreased phosphorylation of MEK and ERK. Furthermore, we demonstrate a synergistic effect of combining SRC and MEK inhibitors in both AZD0530 sensitive and resistant cells, and that MEK inhibition is sufficient to completely resensitize AZD0530 resistant cells. This work provides a preclinical rationale for the combination of SRC and MEK inhibitors in the treatment of ovarian cancer, and also highlights the need for biomarker driven patient selection for clinical trials

    An international, multicentre survey of β-lactam antibiotic therapeutic drug monitoring practice in intensive care units

    Get PDF
    Objectives Emerging evidence supports the use of therapeutic drug monitoring (TDM) of β-lactams for intensive care unit (ICU) patients to optimize drug exposure, although limited detail is available on how sites run this service in practice. This multicentre survey study was performed to describe the various approaches used for β-lactam TDM in ICUs. Methods A questionnaire survey was developed to describe various aspects relating to the conduct of β-lactam TDM in an ICU setting. Data sought included: β-lactams chosen for TDM, inclusion criteria for selecting patients, blood sampling strategy, analytical methods, pharmacokinetic (PK)/pharmacodynamic (PD) targets and dose adjustment strategies. Results Nine ICUs were included in this survey. Respondents were either ICU or infectious disease physicians, pharmacists or clinical pharmacologists. Piperacillin (co-formulated with tazobactam) and meropenem (100% of units surveyed) were the β-lactams most commonly subject to TDM, followed by ceftazidime (78%), ceftriaxone (43%) and cefazolin (43%). Different chromatographic and microbiological methods were used for assay of β-lactam concentrations in blood and other biological fluids (e.g. CSF). There was significant variation in the PK/PD targets (100% fT>MIC up to 100% fT>4×MIC) and dose adjustment strategies used by each of the sites. Conclusions Large variations were found in the type of β-lactams tested, the patients selected for TDM and drug assay methods. Significant variation observed in the PK/PD targets and dose adjustment strategies used supports the need for further studies that robustly define PK/PD targets for ICU patients to ensure a greater consistency of practice for dose adjustment strategies for optimizing β-lactam dosing with TD

    Revolutionizing Clinical Microbiology Laboratory Organization in Hospitals with In Situ Point-of-Care

    Get PDF
    BACKGROUND: Clinical microbiology may direct decisions regarding hospitalization, isolation and anti-infective therapy, but it is not effective at the time of early care. Point-of-care (POC) tests have been developed for this purpose. METHODS AND FINDINGS: One pilot POC-lab was located close to the core laboratory and emergency ward to test the proof of concept. A second POC-lab was located inside the emergency ward of a distant hospital without a microbiology laboratory. Twenty-three molecular and immuno-detection tests, which were technically undemanding, were progressively implemented, with results obtained in less than four hours. From 2008 to 2010, 51,179 tests yielded 6,244 diagnoses. The second POC-lab detected contagious pathogens in 982 patients who benefited from targeted isolation measures, including those undertaken during the influenza outbreak. POC tests prevented unnecessary treatment of patients with non-streptococcal tonsillitis (n = 1,844) and pregnant women negative for Streptococcus agalactiae carriage (n = 763). The cerebrospinal fluid culture remained sterile in 50% of the 49 patients with bacterial meningitis, therefore antibiotic treatment was guided by the molecular tests performed in the POC-labs. With regard to enterovirus meningitis, the mean length-of-stay of infected patients over 15 years old significantly decreased from 2008 to 2010 compared with 2005 when the POC was not in place (1.43±1.09 versus 2.91±2.31 days; p = 0.0009). Altogether, patients who received POC tests were immediately discharged nearly thrice as often as patients who underwent a conventional diagnostic procedure. CONCLUSIONS: The on-site POC-lab met physicians' needs and influenced the management of 8% of the patients that presented to emergency wards. This strategy might represent a major evolution of decision-making regarding the management of infectious diseases and patient care

    A rapid, automatic and accurate assay for quantifying temocillin in human serum and CSF using turbulent flow liquid chromatography coupled to high‐resolution mass spectrometry. Clinical application

    No full text
    International audienceTemocillin is a β-lactamase-resistant penicillin used for the treatment of multiple drug-resistant Gram-negative bacteria. To maximize efficacy and avoid adverse effects, the dose regimen has to be quickly adjusted to the clinical situations. This necessitates the development of a rapid, reliable and accurate analytical method. Temocillin and the stable isotopically labeled internal standard ([13 C6 ]-amoxicillin) were extracted from either serum or cerebrospinal fluid by a turbulent flow liquid chromatographic method and eluted onto an octadecyl-silica phase with polar endcapping. Mass spectrometry was conducted using an exact mass determination method by electrospray positive ionization high-resolution mass spectrometry. The LLOQ and ULOQ of the present method were determined to be 0.4 and 200 μg/ml for serum and cerebrospinal fluid samples, respectively. The total analysis time was <7 min. The recovery ranged from 87.7 to 120.8%. Intra- and inter-day precision and trueness were tested at four concentration levels: 0.4, 8, 40 and 160 μg/ml. Values were 6.33 ± 1.53, 8.8 ± 1.3, 8.8 ± 0.36 and 2.1 ± 0.76%, and 5.0 ± 0.54, 9.9 ± 1.0, 5.8 ± 1.6 and 0.1 ± 1.1%, for inter- and intra-day analysis, respectively. Temocillin was found to be stable under all relevant laboratory conditions. The method was cross-validated with a microbiological assay. This method is suitable for accurate measurement of temocillin concentration in small volumes of serum or cerebrospinal fluid. Thanks to the online extraction procedure, the overall analytical time is compatible with high-throughput analysis for clinical application
    corecore