5 research outputs found
Genetic architecture of heart mitochondrial proteome influencing cardiac hypertrophy.
Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in â„50 strains). High- resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, eluci- dating mechanisms that may underlie genetic susceptibility to heart failure in human populations
Méthodes statistiques pour la stratification de patients dans le contexte de l'obésité : application aux données du microbiote intestinal et cytométrie en flux
The prevalence of obesity and type II diabetes has experienced a significant surge in recent times, underscoring the urgent need for public health research in this domain. Concurrently, the advent of high-throughput technologies has enabled the collection of extensive and diverse data from patients as well as the intestinal microbiota. This high-dimensional data has a structure that is unique to each patient. So, in order to identify different patterns between patients and to be able to stratify (i.e. classify them into different homogeneous subgroups based on their biological characteristics) them, it is necessary to develop new computational methods. This thesis presents the concept of Double Clustering, which involves the task of simultaneously grouping cell types and patients. To address this challenge, we propose a novel algorithmic approach called LDA-DC (Latent Dirichlet Allocation for Double Clustering). This method aims to identify clusters of cells associated with patient phenotypes, facilitating effective patient stratification. Through the utilization of publicly available patient data, we demonstrate the efficacy of our methodology. Furthermore, we apply our approach on metagenomic data from patients of the NutriOmics laboratory and clustered them into a network structure that reveals groups of patients with shared clinical, biological, and nutritional characteristics. Additionally, we have developed an artificial neural network-based methodology to predict the metabolic age of patients suffering from obesity and/or diabetes, allowing for a comparison with non-obese patients and enabling further patient stratification. This thesis is therefore in line with the concept of precision and predictive medicine, proposing a computational framework for stratifying patients and identifying different variables that can be modulated as part of preventive health strategies.La prĂ©valence de l'obĂ©sitĂ© et du diabĂšte de type II a fortement augmentĂ© ces derniĂšres annĂ©es, faisant de la recherche dans ces domaines une prioritĂ© de santĂ© publique. ParallĂšlement Ă cela, le dĂ©veloppement des technologies Ă haut dĂ©bit ont permis dâobtenir un grand nombre de donnĂ©es hĂ©tĂ©rogĂšnes provenant des patients et de leur microbiote intestinal. Ces donnĂ©es de grandes dimensions ont une structure qui est propre Ă chacun d'eux. Ainsi dans le but dâidentifier diffĂ©rents schĂ©mas entre les patients et pouvoir les stratifier (câest-Ă -dire les classifier en diffĂ©rents sous-groupes homogĂšnes en fonction de leurs caractĂ©ristiques biologiques), il est nĂ©cessaire de dĂ©velopper de nouvelles mĂ©thodes computationnelles. Cette thĂšse prĂ©sente le concept de « Double Clustering », qui implique la tĂąche de regrouper simultanĂ©ment les types de cellules et les patients. Pour cela, nous proposons une nouvelle approche algorithmique appelĂ©e LDA-DC (Latent Dirichlet Allocation for Double Clustering) dont le but est dâidentifier les groupes de cellules associĂ©s aux phĂ©notypes des patients, facilitant ainsi une stratification efficace de ceux-ci. Nous dĂ©montrons l'efficacitĂ© de notre mĂ©thodologie en utilisant des donnĂ©es de patients disponibles publiquement. De plus, nous appliquons notre approche aux donnĂ©es mĂ©tagĂ©nomiques des patients du laboratoire NutriOmics et stratifions les patients sous forme de rĂ©seau rĂ©vĂ©lant des groupes de patients ayant des caractĂ©ristiques cliniques, biologiques et nutritionnelles communes. Dâautre part, nous avons dĂ©veloppĂ© une mĂ©thodologie basĂ©e sur un rĂ©seau de neurones artificiel dans le but de prĂ©dire lâĂąge mĂ©tabolique des patients atteints dâobĂ©sitĂ© et/ou de diabĂšte de type II en comparaison des patients non-obĂšses, permettant une stratification des patients. Ainsi, cette thĂšse s'aligne avec les principes de la mĂ©decine de prĂ©cision et de la mĂ©decine prĂ©dictive en proposant une approche computationnelle permettant la stratification des patients et l'identification de variables pouvant ĂȘtre modulĂ©es dans le cadre d'une stratĂ©gie de mĂ©decine prĂ©ventive
Méthodes statistiques pour la stratification de patients dans le contexte de l'obésité : application aux données du microbiote intestinal et cytométrie en flux
La prĂ©valence de l'obĂ©sitĂ© et du diabĂšte de type II a fortement augmentĂ© ces derniĂšres annĂ©es, faisant de la recherche dans ces domaines une prioritĂ© de santĂ© publique. ParallĂšlement Ă cela, le dĂ©veloppement des technologies Ă haut dĂ©bit ont permis dâobtenir un grand nombre de donnĂ©es hĂ©tĂ©rogĂšnes provenant des patients et de leur microbiote intestinal. Ces donnĂ©es de grandes dimensions ont une structure qui est propre Ă chacun d'eux. Ainsi dans le but dâidentifier diffĂ©rents schĂ©mas entre les patients et pouvoir les stratifier (câest-Ă -dire les classifier en diffĂ©rents sous-groupes homogĂšnes en fonction de leurs caractĂ©ristiques biologiques), il est nĂ©cessaire de dĂ©velopper de nouvelles mĂ©thodes computationnelles. Cette thĂšse prĂ©sente le concept de « Double Clustering », qui implique la tĂąche de regrouper simultanĂ©ment les types de cellules et les patients. Pour cela, nous proposons une nouvelle approche algorithmique appelĂ©e LDA-DC (Latent Dirichlet Allocation for Double Clustering) dont le but est dâidentifier les groupes de cellules associĂ©s aux phĂ©notypes des patients, facilitant ainsi une stratification efficace de ceux-ci. Nous dĂ©montrons l'efficacitĂ© de notre mĂ©thodologie en utilisant des donnĂ©es de patients disponibles publiquement. De plus, nous appliquons notre approche aux donnĂ©es mĂ©tagĂ©nomiques des patients du laboratoire NutriOmics et stratifions les patients sous forme de rĂ©seau rĂ©vĂ©lant des groupes de patients ayant des caractĂ©ristiques cliniques, biologiques et nutritionnelles communes. Dâautre part, nous avons dĂ©veloppĂ© une mĂ©thodologie basĂ©e sur un rĂ©seau de neurones artificiel dans le but de prĂ©dire lâĂąge mĂ©tabolique des patients atteints dâobĂ©sitĂ© et/ou de diabĂšte de type II en comparaison des patients non-obĂšses, permettant une stratification des patients. Ainsi, cette thĂšse s'aligne avec les principes de la mĂ©decine de prĂ©cision et de la mĂ©decine prĂ©dictive en proposant une approche computationnelle permettant la stratification des patients et l'identification de variables pouvant ĂȘtre modulĂ©es dans le cadre d'une stratĂ©gie de mĂ©decine prĂ©ventive.The prevalence of obesity and type II diabetes has experienced a significant surge in recent times, underscoring the urgent need for public health research in this domain. Concurrently, the advent of high-throughput technologies has enabled the collection of extensive and diverse data from patients as well as the intestinal microbiota. This high-dimensional data has a structure that is unique to each patient. So, in order to identify different patterns between patients and to be able to stratify (i.e. classify them into different homogeneous subgroups based on their biological characteristics) them, it is necessary to develop new computational methods. This thesis presents the concept of Double Clustering, which involves the task of simultaneously grouping cell types and patients. To address this challenge, we propose a novel algorithmic approach called LDA-DC (Latent Dirichlet Allocation for Double Clustering). This method aims to identify clusters of cells associated with patient phenotypes, facilitating effective patient stratification. Through the utilization of publicly available patient data, we demonstrate the efficacy of our methodology. Furthermore, we apply our approach on metagenomic data from patients of the NutriOmics laboratory and clustered them into a network structure that reveals groups of patients with shared clinical, biological, and nutritional characteristics. Additionally, we have developed an artificial neural network-based methodology to predict the metabolic age of patients suffering from obesity and/or diabetes, allowing for a comparison with non-obese patients and enabling further patient stratification. This thesis is therefore in line with the concept of precision and predictive medicine, proposing a computational framework for stratifying patients and identifying different variables that can be modulated as part of preventive health strategies
Beta-hydroxybutyrate dampens adipose progenitorsâ profibrotic activation through canonical TgfÎČ signaling and non-canonical ZFP36-dependent mechanisms
International audienceAdipose tissue contains progenitor cells that contribute to beneficial tissue expansion when needed by de novo adipocyte formation (classical white or beige fat cells with thermogenic potential). However, in chronic obesity, they can exhibit an activated pro-fibrotic, extracellular matrix (ECM)-depositing phenotype that highly aggravates obesity-related adipose tissue dysfunction.Objective: Given that progenitors' fibrotic activation and fat cell browning appear to be antagonistic cell fates, we have examined the anti-fibrotic potential of pro-browning agents in an obesogenic condition.Results: In obese mice fed a high fat diet, thermoneutral housing, which induces brown fat cell dormancy, increases the expression of ECM gene programs compared to conventionally raised animals, indicating aggravation of obesity-related tissue fibrosis at thermoneutrality. In a model of primary cultured murine adipose progenitors, we found that exposure to b-hydroxybutyrate selectively reduced Tgfb-dependent profibrotic responses of ECM genes like Ctgf, Loxl2 and Fn1. This effect is observed in both subcutaneous and visceral-derived adipose progenitors, as well as in 3T3-L1 fibroblasts. In 30 patients with obesity eligible for bariatric surgery, those with higher circulating b-hydroxybutyrate levels have lower subcutaneous adipose tissue fibrotic scores. Mechanistically, b-hydroxybutyrate limits Tgfb-dependent collagen accumulation and reduces Smad2-3 protein expression and phosphorylation in visceral progenitors. Moreover, b-hydroxybutyrate induces the expression of the ZFP36 gene, encoding a post-transcriptional regulator that promotes the degradation of mRNA by binding to AU-rich sites within 3 0 UTRs. Importantly, complete ZFP36 deficiency in a mouse embryonic fibroblast line from null mice, or siRNA knock-down in primary progenitors, indicate that ZFP36 is required for b-hydroxybutyrate anti-fibrotic effects.Conclusion: These data unravel the potential of b-hydroxybutyrate to limit adipose tissue matrix deposition, a finding that might exploited in an obesogenic context
Recommended from our members
Genetic architecture of heart mitochondrial proteome influencing cardiac hypertrophy.
Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in â„50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations