10 research outputs found
High-dose Cefepime vs Carbapenems for Bacteremia Caused by Enterobacterales With Moderate to High Risk of Clinically Significant AmpC β-lactamase Production
BACKGROUND: Limited data suggest that serious infections caused by Enterobacterales with a moderate to high risk of clinically significant AmpC production can be successfully treated with cefepime if the cefepime minimum inhibitory concentration (MIC) is ≤2 µg/mL. However, isolates with a cefepime-susceptible dose-dependent (SDD) MIC of 4-8 µg/mL should receive a carbapenem due to target attainment and extended-spectrum β-lactamase (ESBL) concerns.
METHODS: This was a retrospective cohort study of hospitalized patients with
RESULTS: Of the 315 patients included, 169 received cefepime and 146 received a carbapenem (ertapenem n = 90, meropenem n = 56). Cefepime was not associated with an increased risk of 30-day mortality compared with carbapenem therapy (adjusted hazard ratio [aHR], 1.45; 95% CI, 0.79-2.14), which was consistent for patients with cefepime SDD isolates (aHR, 1.19; 95% CI, 0.52-1.77). Multivariable weighted Cox models identified Pitt bacteremia score \u3e4 (aHR, 1.41; 95% CI, 1.04-1.92), deep infection (aHR, 2.27; 95% CI, 1.21-4.32), and ceftriaxone-resistant AmpC-E (aHR, 1.32; 95% CI, 1.03-1.59) to be independent predictors associated with increased mortality risk, while receipt of prolonged-infusion β-lactam was protective (aHR, 0.67; 95% CI, 0.40-0.89).
CONCLUSIONS: Among patients with bacteremia caused by Enterobacterales with moderate to high risk of clinically significant AmpC production, these data demonstrate similar risk of 30-day mortality for high-dose cefepime or a carbapenem as definitive β-lactam therapy
Impact of Ceftolozane-Tazobactam vs. Best Alternative Therapy on Clinical Outcomes in Patients with Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Lower Respiratory Tract Infections
INTRODUCTION: Infections caused by multidrug-resistant (MDR), extensively drug-resistant (XDR), and difficult-to-treat (DTR) Pseudomonas aeruginosa are increasingly challenging to combat. Ceftolozane-tazobactam (C/T) is a novel β-lactam-β-lactamase inhibitor combination now commonly used to treat MDR and XDR P. aeruginosa. Lower respiratory tract infections (LRTIs) remain the most common source of infection caused by MDR/XDR P. aeruginosa. Comparative effectiveness studies to date have been limited by the type of comparator agents (i.e., aminoglycosides and polymyxins) and the inclusion of multiple infection sources (i.e., urinary tract, abdominal, skin and soft tissue, etc.).
METHODS: We performed a multicenter, retrospective analysis of adults with LRTI caused by MDR or XDR P. aeruginosa admitted from January 2014 to December 2019. We aimed to compare clinical outcomes between patients who received C/T (n = 118) versus best alternative therapy (n = 88). The primary outcome was clinical failure, defined as 30-day mortality and/or an adverse drug reaction on antibiotic therapy.
RESULTS: Two hundred and six patients met inclusion criteria. The C/T group had a significantly higher proportion of XDR P. aeruginosa and ventilator-associated bacterial pneumonia (VABP). After multivariable logistic regression, C/T treatment was independently associated with a 73.3% reduction in clinical failure compared to those who received best alternative therapy (P \u3c 0.001). The number needed to harm with best alternative therapy was 3.
CONCLUSION: Our results suggest that C/T is a safe and effective therapeutic regimen for patients with MDR and XDR P. aeruginosa LRTI
Early and Delayed Effect of Functional Endoscopic Sinus Surgery on Intraocular Pressure
Introduction Due to the close anatomical relationship between the paranasal sinuses and the orbit, involvement or injury of the orbit from paranasal sinuses procedures may occur.
Objectives We aimed to study the early and delayed effect of endoscopic sinus surgery on intraocular pressure (IOP).
Methods We included in the study 38 patients with chronic rhinosinusitis (CRS), undergoing FESS. We performed FESS with the standard anterior to posterior approach. We measured IOP at the same time one day before surgery as well as day 1 and 6 weeks after surgery.
Results One day after surgery, mean IOP in the right eye was 14.176 ± 1.91 mm Hg and in the left eye was 13.79 ± 2.42 mm Hg with statistically non-significant difference from preoperative values. Six weeks postoperative, the mean IOP in the right eye was 15.14 ± 2.28 mm Hg. The difference between the mean preoperative and postoperative IOP values was found to be statistically significant (p = 0.0012). While in the left eye, mean postoperative IOP was 15.14 + 2.23mm Hg. The difference between the mean preoperative and postoperative IOP values was also found to be highly statistically significant (p = 0.0005).
Conclusion Delayed significant increase in IOP can occur after FESS, Thus, special measures must be taken to reduce IOP to protect the patient́s eye from the risk of increased IOP, especially in patients with glaucoma
Phage-Antibiotic Cocktail Rescues Daptomycin and Phage Susceptibility against Daptomycin-Nonsusceptible Enterococcus faecium in a Simulated Endocardial Vegetation Ex Vivo Model
ABSTRACT Enterococcus faecium is a difficult-to-treat pathogen with emerging resistance to most clinically available antibiotics. Daptomycin (DAP) is the standard of care, but even high DAP doses (12 mg/kg body weight/day) failed to eradicate some vancomycin-resistant strains. Combination DAP-ceftaroline (CPT) may increase β-lactam affinity for target penicillin binding proteins (PBP); however, in a simulated endocardial vegetation (SEV) pharmacokinetic/pharmacodynamic (PK/PD) model, DAP-CPT did not achieve therapeutic efficacy against a DAP-nonsusceptible (DNS) vancomycin-resistant E. faecium (VRE) isolate. Phage-antibiotic combinations (PAC) have been proposed for resistant high-inoculum infections. We aimed to identify PAC with maximum bactericidal activity and prevention/reversal of phage and antibiotic resistance in an SEV PK/PD model against DNS isolate R497. Phage-antibiotic synergy (PAS) was evaluated with modified checkerboard MIC and 24-h time-kill analyses (TKA). Human-simulated antibiotic doses of DAP and CPT with phages NV-497 and NV-503-01 were then evaluated in 96-h SEV PK/PD models against R497. Synergistic and bactericidal activity was identified with the PAC of DAP-CPT combined with phage cocktail NV-497–NV-503-01, demonstrating a significant reduction in viability down to 3-log10 CFU/g (–Δ, 5.77-log10 CFU/g; P < 0.001). This combination also demonstrated isolate resensitization to DAP. Evaluation of phage resistance post-SEV demonstrated prevention of phage resistance for PACs containing DAP-CPT. Our results provide novel data highlighting bactericidal and synergistic activity of PAC against a DNS E. faecium isolate in a high-inoculum ex vivo SEV PK/PD model with subsequent DAP resensitization and prevention of phage resistance. IMPORTANCE Our study supports the additional benefit of standard-of-care antibiotics combined with a phage cocktail compared to antibiotic alone against a daptomycin-nonsusceptible (DNS) E. faecium isolate in a high-inoculum simulated endocardial vegetation ex vivo PK/PD model. E. faecium is a leading cause of hospital-acquired infections and is associated with significant morbidity and mortality. Daptomycin is considered the first-line therapy for vancomycin-resistant E. faecium (VRE), but the highest published doses have failed to eradicate some VRE isolates. The addition of a β-lactam to daptomycin may result in synergistic activity, but previous in vitro data demonstrate that daptomycin plus ceftaroline failed to eradicate a VRE isolate. Phage therapy as an adjunct to antibiotic therapy has been proposed as a salvage therapy for high-inoculum infections; however, pragmatic clinical comparison trials for endocarditis are lacking and difficult to design, reinforcing the timeliness of such analysis
Risk Factors for Carbapenem-Resistant Enterobacterales Clinical Treatment Failure
The Centers for Disease Control and Prevention (CDC) categorized carbapenem-resistant Enterobacterales (CRE) infections as an urgent health care threat requiring public attention and research. Certain patients with CRE infections may be at higher risk for poor clinical outcomes than others. Evidence on risk or protective factors for CRE infections are warranted in order to determine the most at-risk populations, especially with newer beta-lactam/beta-lactamase inhibitor (BL/BLI) antibiotics available to treat CRE. We aimed to identify specific variables involved in CRE treatment that are associated with clinical failure (either 30-day mortality, 30-day microbiologic recurrence, or clinical worsening/failure to improve throughout antibiotic treatment). We conducted a retrospective, observational cohort study of hospitalized patients with CRE infection sampled from 2010 to 2020 at two medical systems in Detroit, Michigan. Patients were included if they were ≥18 years old and culture positive for an organism in the Enterobacterales order causing clinical infection with in vitro resistance by Clinical and Laboratory Standards Institute (CLSI) breakpoints to at least one carbapenem. Overall, there were 140 confirmed CRE infections of which 39% had clinical failure. The most common infection sources were respiratory (38%), urinary (20%), intra-abdominal (16%), and primary bacteremia (14%). A multivariable logistic regression model was developed to identify statistically significant associated predictors with clinical failure, and they included Sequential Organ Failure Assessment (SOFA) score (adjusted odds ratio [aOR], 1.18; 95% confidence interval [CI], 1.06 to 1.32), chronic dialysis (aOR, 5.86; 95% CI, 1.51-22.7), and Klebsiella pneumoniae in index culture (aOR, 3.09; 95% CI, 1.28 to 7.47). Further research on CRE infections is needed to identify best practices to promote treatment success.
IMPORTANCE This work compares carbapenem-resistant Enterobacterales (CRE) infections using patient, clinical, and treatment variables to understand which characteristics are associated with the highest risk of clinical failure. Knowing which risk factors are associated with CRE infection failure can provide clinicians better prognostic and targeted interventions. Research can also further investigate why certain risk factors cause more clinical failure and can help develop treatment strategies to mitigate associated risk factors
Phage Cocktails with Daptomycin and Ampicillin Eradicates Biofilm-Embedded Multidrug-Resistant <i>Enterococcus faecium</i> with Preserved Phage Susceptibility
Multidrug-resistant (MDR) Enterococcus faecium is a challenging nosocomial pathogen known to colonize medical device surfaces and form biofilms. Bacterio (phages) may constitute an emerging anti-infective option for refractory, biofilm-mediated infections. This study evaluates eight MDR E. faecium strains for biofilm production and phage susceptibility against nine phages. Two E. faecium strains isolated from patients with bacteremia and identified to be biofilm producers, R497 (daptomycin (DAP)-resistant) and HOU503 (DAP-susceptible dose-dependent (SDD), in addition to four phages with the broadest host ranges (ATCC 113, NV-497, NV-503-01, NV-503-02) were selected for further experiments. Preliminary phage-antibiotic screening was performed with modified checkerboard minimum biofilm inhibitory concentration (MBIC) assays to efficiently screen for bacterial killing and phage-antibiotic synergy (PAS). Data were compared by one-way ANOVA and Tukey (HSD) tests. Time kill analyses (TKA) were performed against R497 and HOU503 with DAP at 0.5× MBIC, ampicillin (AMP) at free peak = 72 µg/mL, and phage at a multiplicity of infection (MOI) of 0.01. In 24 h TKA against R497, phage-antibiotic combinations (PAC) with DAP, AMP, or DAP + AMP combined with 3- or 4-phage cocktails demonstrated significant killing compared to the most effective double combination (ANOVA range of mean differences 2.998 to 3.102 log10 colony forming units (CFU)/mL; p = 0.011, 2.548 to 2.868 log10 colony forming units (CFU)/mL; p = 0.023, and 2.006 to 2.329 log10 colony forming units (CFU)/mL; p = 0.039, respectively), with preserved phage susceptibility identified in regimens with 3-phage cocktails containing NV-497 and the 4-phage cocktail. Against HOU503, AMP combined with any 3- or 4-phage cocktail and DAP + AMP combined with the 3-phage cocktail ATCC 113 + NV-497 + NV-503-01 demonstrated significant PAS and bactericidal activity (ANOVA range of mean differences 2.251 to 2.466 log10 colony forming units (CFU)/mL; p = 0.044 and 2.119 to 2.350 log10 colony forming units (CFU)/mL; p = 0.028, respectively), however, only PAC with DAP + AMP maintained phage susceptibility at the end of 24 h TKA. R497 and HOU503 exposure to DAP, AMP, or DAP + AMP in the presence of single phage or phage cocktail resulted in antibiotic resistance stabilization (i.e., no antibiotic MBIC elevation compared to baseline) without identified antibiotic MBIC reversion (i.e., lowering of antibiotic MBIC compared to baseline in DAP-resistant and DAP-SDD isolates) at the end of 24 h TKA. In conclusion, against DAP-resistant R497 and DAP-SDD HOU503 E. faecium clinical blood isolates, the use of DAP + AMP combined with 3- and 4-phage cocktails effectively eradicated biofilm-embedded MDR E. faecium without altering antibiotic MBIC or phage susceptibility compared to baseline
Long-term evaluation of clinical success and safety of omadacycline in nontuberculous mycobacteria infections: a retrospective, multicenter cohort of real-world health outcomes.
Infections due to nontuberculous mycobacteria (NTM) continue to increase in prevalence, leading to problematic clinical outcomes. Omadacycline (OMC) is an aminomethylcycline antibiotic with FDA orphan drug and fast-track designations for pulmonary NTM infections, including Mycobacteroides abscessus (MAB). This multicenter retrospective study across 16 U.S. medical institutions from January 2020 to March 2023 examined the long-term clinical success, safety, and tolerability of OMC for NTM infections. The cohort included patients aged ≥18 yr, who were clinically evaluable, and` had been treated with OMC for ≥3 mo without a previous diagnosis of cystic fibrosis. The primary outcome was 3 mo clinical success, with secondary outcomes including clinical improvement and mortality at 6- and 12 mo, persistence or reemergence of infection, adverse effects, and reasons for OMC utilization. Seventy-five patients were included in this analysis. Most patients were female (48/75, 64.0%) or Caucasian (58/75, 77.3%), with a median (IQR) age of 59 yr (49–67). Most had NTM pulmonary disease (33/75, 44.0%), skin and soft tissue disease (19/75, 25.3%), or osteomyelitis (10/75, 13.3%), and Mycobacterium abscessus (60/75, 80%) was the most commonly isolated NTM pathogen. The median (IQR) treatment duration was 6 mo (4–14), and the most commonly co-administered antibiotic was azithromycin (33/70, 47.1%). Three-month clinical success was observed in 80.0% (60/75) of patients, and AEs attributable to OMC occurred in 32.0% (24/75) of patients, leading to drug discontinuation in 9.3% (7/75)