113 research outputs found
Cardiopulmonary Exercise Testing in Lung Transplantation: A Review
There has been an increase in lung transplantation in the USA. Lung allocation is guided by the lung allocation score (LAS), which takes into account one measure of exercise capacity, the 6-minute walk test (6MWT). There is a paucity of data regarding the role and value of cardiopulmonary stress test (CPET) in the evaluation of lung transplant recipients while on the transplant waiting list and after lung transplantation. While clearly there is a need for further prospective investigation, the available literature strongly suggests a potential role for CPET in the setting of lung transplant
Recommended from our members
Epithelial Cell Mitochondrial Dysfunction and PINK1 Are Induced by Transforming Growth Factor- Beta1 in Pulmonary Fibrosis
Background: Epithelial cell death is a major contributor to fibrogenesis in the lung. In this study, we sought to determine the function of mitochondria and their clearance (mitophagy) in alveolar epithelial cell death and fibrosis. Methods: We studied markers of mitochondrial injury and the mitophagy marker, PTEN-induced putative kinase 1 (PINK1), in IPF lung tissues by Western blotting, transmission electron microscopy (TEM), and immunofluorescence. In vitro experiments were carried out in lung epithelial cells stimulated with transforming growth factor-β1 (TGF-β1). Changes in cell function were measured by Western blotting, flow cytometry and immunofluorescence. In vivo experiments were performed using the murine bleomycin model of lung fibrosis. Results: Evaluation of IPF lung tissue demonstrated increased PINK1 expression by Western blotting and immunofluorescence and increased numbers of damaged mitochondria by TEM. In lung epithelial cells, TGF-β1 induced mitochondrial depolarization, mitochondrial ROS, and PINK1 expression; all were abrogated by mitochondrial ROS scavenging. Finally, Pink1-/- mice were more susceptible than control mice to bleomycin induced lung fibrosis. Conclusion: TGF-β1 induces lung epithelial cell mitochondrial ROS and depolarization and stabilizes the key mitophagy initiating protein, PINK1. PINK1 ameliorates epithelial cell death and may be necessary to limit fibrogenesis
Mucus-degrading Bacteroides link carbapenems to aggravated graft-versus-host disease
View full abstracthttps://openworks.mdanderson.org/leading-edge/1009/thumbnail.jp
Comparison of proton channel, phagocyte oxidase, and respiratory burst levels between human eosinophil and neutrophil granulocytes.
Robust production of reactive oxygen species (ROS) by phagocyte NADPH oxidase (phox) during the respiratory burst (RB) is a characteristic feature of eosinophil and neutrophil granulocytes. In these cells the voltage-gated proton channel (Hv1) is now considered as an ancillary subunit of the phox needed for intense ROS production. Multiple sources reported that the expression of phox subunits and RB is more intensive in eosinophils than in neutrophils. In most of these studies the eosinophils were not isolated from healthy individuals, and a comparative analysis of Hv1 expression had never been carried out. We performed a systematic comparison of the levels of essential phox subunits, Hv1 expression and ROS producing capacity between eosinophils and neutrophils of healthy individuals. The expression of phox components was similar, whereas the amount of Hv1 was approximately 10-fold greater in eosinophils. Furthermore, Hv1 expression correlated with Nox2 expression only in eosinophils. Additionally, in confocal microscopy experiments co-accumulation of Hv1 and Nox2 at the cell periphery was observed in resting eosinophils but not in neutrophils. While phorbol-12-myristate-13-acetate-induced peak extracellular ROS release was approximately 1.7-fold greater in eosinophils, oxygen consumption studies indicated that the maximal intensity of the RB is only approximately 1.4-fold greater in eosinophils. Our data reinforce that eosinophils, unlike neutrophils, generate ROS predominantly extracellularly. In contrast to previous works we have found that the two granulocyte types display very similar phox subunit expression and RB capacity. The large difference in Hv1 expression suggests that its support to intense ROS production is more important at the cell surface
Association Between Interstitial Lung Abnormalities and All-Cause Mortality.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files.
This article is open access.Interstitial lung abnormalities have been associated with lower 6-minute walk distance, diffusion capacity for carbon monoxide, and total lung capacity. However, to our knowledge, an association with mortality has not been previously investigated.To investigate whether interstitial lung abnormalities are associated with increased mortality.Prospective cohort studies of 2633 participants from the FHS (Framingham Heart Study; computed tomographic [CT] scans obtained September 2008-March 2011), 5320 from the AGES-Reykjavik Study (Age Gene/Environment Susceptibility; recruited January 2002-February 2006), 2068 from the COPDGene Study (Chronic Obstructive Pulmonary Disease; recruited November 2007-April 2010), and 1670 from ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints; between December 2005-December 2006).Interstitial lung abnormality status as determined by chest CT evaluation.All-cause mortality over an approximate 3- to 9-year median follow-up time. Cause-of-death information was also examined in the AGES-Reykjavik cohort.Interstitial lung abnormalities were present in 177 (7%) of the 2633 participants from FHS, 378 (7%) of 5320 from AGES-Reykjavik, 156 (8%) of 2068 from COPDGene, and in 157 (9%) of 1670 from ECLIPSE. Over median follow-up times of approximately 3 to 9 years, there were more deaths (and a greater absolute rate of mortality) among participants with interstitial lung abnormalities when compared with those who did not have interstitial lung abnormalities in the following cohorts: 7% vs 1% in FHS (6% difference [95% CI, 2% to 10%]), 56% vs 33% in AGES-Reykjavik (23% difference [95% CI, 18% to 28%]), and 11% vs 5% in ECLIPSE (6% difference [95% CI, 1% to 11%]). After adjustment for covariates, interstitial lung abnormalities were associated with a higher risk of death in the FHS (hazard ratio [HR], 2.7 [95% CI, 1.1 to 6.5]; P = .03), AGES-Reykjavik (HR, 1.3 [95% CI, 1.2 to 1.4]; P < .001), COPDGene (HR, 1.8 [95% CI, 1.1 to 2.8]; P = .01), and ECLIPSE (HR, 1.4 [95% CI, 1.1 to 2.0]; P = .02) cohorts. In the AGES-Reykjavik cohort, the higher rate of mortality could be explained by a higher rate of death due to respiratory disease, specifically pulmonary fibrosis.In 4 separate research cohorts, interstitial lung abnormalities were associated with a greater risk of all-cause mortality. The clinical implications of this association require further investigation.National Institutes of Health (NIH)
T32 HL007633
Icelandic Research Fund
141513-051
Landspitali Scientific Fund
A-2015-030
National Cancer Institute grant
1K23CA157631
NIH
K08 HL097029
R01 HL113264
R21 HL119902
K25 HL104085
R01 HL116931
R01 HL116473
K01 HL118714
R01 HL089897
R01 HL089856
N01-AG-1-2100
HHSN27120120022C
P01 HL105339
P01 HL114501
R01 HL107246
R01 HL122464
R01 HL111024
National Heart, Lung, and Blood Institute's Framingham Heart Study contract
N01-HC-2519.5
GlaxoSmithKline
NCT00292552
5C0104960
National Institute on Aging (NIA) grant
27120120022C
NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association)
Althingi (the Icelandic Parliament)
NIA
27120120022
Tumour cells expressing single VEGF isoforms display distinct growth, survival and migration characteristics
Vascular endothelial growth factor-A (VEGF) is produced by most cancer cells as multiple isoforms, which display distinct biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main murine isoforms (VEGF188, 164 and 120) on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that express them individually under endogenous promoter control. Fibrosarcomas expressing only VEGF188 (fs188) or wild type controls (fswt) were typically mesenchymal, formed ruffles and displayed strong matrix-binding activity. VEGF164- and VEGF120-producing cells (fs164 and fs120 respectively) were less typically mesenchymal, lacked ruffles but formed abundant cell-cell contacts. On 3D collagen, fs188 cells remained mesenchymal while fs164 and fs120 cells adopted rounded/amoeboid and a mix of rounded and elongated morphologies respectively. Consistent with their mesenchymal characteristics, fs188 cells migrated significantly faster than fs164 or fs120 cells on 2D surfaces while contractility inhibitors accelerated fs164 and fs120 cell migration. VEGF164/VEGF120 expression correlated with faster proliferation rates and lower levels of spontaneous apoptosis than VEGF188 expression. Nevertheless, VEGF188 was associated with constitutively active/phosphorylated AKT, ERK1/2 and Stat3 proteins. Differences in proliferation rates and apoptosis could be explained by defective signalling downstream of pAKT to FOXO and GSK3 in fs188 and fswt cells, which also correlated with p27/p21 cyclin-dependent kinase inhibitor over-expression. All cells expressed tyrosine kinase VEGF receptors, but these were not active/activatable suggesting that inherent differences between the cell lines are governed by endogenous VEGF isoform expression through complex interactions that are independent of tyrosine kinase receptor activation. VEGF isoforms are emerging as potential biomarkers for anti-VEGF therapies. Our results reveal novel roles of individual isoforms associated with cancer growth and metastasis and highlight the importance of understanding their diverse actions
Lymphangiogenesis Is Required for Pancreatic Islet Inflammation and Diabetes
Lymphangiogenesis is a common phenomenon observed during inflammation and engraftment of transplants, but its precise role in the immune response and underlying mechanisms of regulation remain poorly defined. Here we showed that in response to injury and autoimmunity, lymphangiogenesis occurred around islets and played a key role in the islet inflammation in mice. Vascular endothelial growth factors receptor 3 (VEGFR3) is specifically involved in lymphangiogenesis, and blockade of VEGFR3 potently inhibited lymphangiogenesis in both islets and the draining LN during multiple low-dose streptozotocin (MLDS) induced autoimmune insulitis, which resulted in less T cell infiltration, preservation of islets and prevention of the onset of diabetes. In addition to their well-known conduit function, lymphatic endothelial cells (LEC) also produced chemokines in response to inflammation. These LEC attracted two distinct CX3CR1hi and LYVE-1+ macrophage subsets to the inflamed islets and CX3CR1hi cells were influenced by LEC to differentiate into LYVE-1+ cells closely associated with lymphatic vessels. These observations indicate a linkage among lymphangiogenesis and myeloid cell inflammation during insulitis. Thus, inhibition of lymphangiogenesis holds potential for treating insulitis and autoimmune diabetes
- …