132 research outputs found

    Genetic structure and evolution of the Leishmania genus in Africa and Eurasia: what does MLSA tell us

    Get PDF
    Leishmaniasis is a complex parasitic disease from a taxonomic, clinical and epidemiological point of view. The role of genetic exchanges has been questioned for over twenty years and their recent experimental demonstration along with the identification of interspecific hybrids in natura has revived this debate. After arguing that genetic exchanges were exceptional and did not contribute to Leishmania evolution, it is currently proposed that interspecific exchanges could be a major driving force for rapid adaptation to new reservoirs and vectors, expansion into new parasitic cycles and adaptation to new life conditions. To assess the existence of gene flows between species during evolution we used MLSA-based (MultiLocus Sequence Analysis) approach to analyze 222 Leishmania strains from Africa and Eurasia to accurately represent the genetic diversity of this genus. We observed a remarkable congruence of the phylogenetic signal and identified seven genetic clusters that include mainly independent lineages which are accumulating divergences without any sign of recent interspecific recombination. From a taxonomic point of view, the strong genetic structuration of the different species does not question the current classification, except for species that cause visceral forms of leishmaniasis (L. donovani, L. infantum and L. archibaldi). Although these taxa cause specific clinical forms of the disease and are maintained through different parasitic cycles, they are not clearly distinct and form a continuum, in line with the concept of species complex already suggested for this group thirty years ago. These results should have practical consequences concerning the molecular identification of parasites and the subsequent therapeutic management of the disease

    Trends in yeast diversity discovery

    Get PDF
    Yeasts, usually defined as unicellular fungi, occur in various fungal lineages. Hence, they are not a taxonomic unit, but rather represent a fungal lifestyle shared by several unrelated lineages. Although the discovery of new yeast species occurs at an increasing speed, at the current rate it will likely take hundreds of years, if ever, before they will all be documented. Many parts of the earth, including many threatened habitats, remain unsampled for yeasts and many others are only superficially studied. Cold habitats, such as glaciers, are home to a specific community of cold-adapted yeasts, and, hence, there is some urgency to study such environments at locations where they might disappear soon due to anthropogenic climate change. The same is true for yeast communities in various natural forests that are impacted by deforestation and forest conversion. Many countries of the so-called Global South have not been sampled for yeasts, despite their economic promise. However, extensive research activity in Asia, especially China, has yielded many taxonomic novelties. Comparative genomics studies have demonstrated the presence of yeast species with a hybrid origin, many of them isolated from clinical or industrial environments. DNA-metabarcoding studies have demonstrated the prevalence, and in some cases dominance, of yeast species in soils and marine waters worldwide, including some surprising distributions, such as the unexpected and likely common presence of Malassezia yeasts in marine habitats.TG acknowledges support from the Spanish Ministry of Science and Innovation for grant PGC2018-099921-B-I00, cofounded by European Regional Development Fund (ERDF); from the Catalan Research Agency (AGAUR) SGR423; from the European Union’s Horizon 2020 research and innovation program (ERC-2016–724173); from the Gordon and Betty Moore Foundation (Grant # GBMF9742). JG acknowledges support from the Lendület Program (award no. 96049) of the Hungarian Academy of Sciences and the Eötvös Lóránd Research Network. Q-MW was supported by grants No. 31961133020 and No. 31770018 from the National Natural Science Foundation of China (NSFC). ASA and FEB were supported by grant 9343 from the Gordon and Betty Moore Foundation: https://doi.org/10.37807/GBMF9343."Article signat per 12 autors/es: Teun Boekhout, Anthony S. Amend, Fouad El Baidouri, Toni Gabaldón, József Geml, Moritz Mittelbach, Vincent Robert, Chen Shuhui Tan, Benedetta Turchetti, Duong Vu, Qi-Ming Wang & Andrey Yurkov "Postprint (published version

    Evolutionary history of Leishmania killicki (synonymous Leishmania tropica) and taxonomic implications

    Get PDF
    Background: Leishmania (L.) killicki is responsible for the chronic cutaneous leishmaniasis. The taxonomic status of this parasite is still not well defined. It was suggested on one hand to include this taxon within L. tropica complex but also on the other hand to consider it as a distinct phylogenetic complex. The present work represents the more detailed study on the evolutionary history of L. killicki relative to L. tropica and the taxonomic implications. Methods: Thirty five L. killicki and 25 L. tropica strains isolated from humans and from several countries were characterized using the MultiLocus Enzyme Electrophoresis (MLEE) and the MultiLocus Sequence Typing (MLST) approaches. Results: The genetic and phylogenetic analyses strongly support that L. killicki belongs to L. tropica complex. The study suggests the emergence of L. killicki by a funder effect followed by an independent evolution from L. tropica, but does not validate the species status of this taxon. In this context, we suggest to call this taxon L. killicki (synonymous L. tropica) until further epidemiological and phylogenetic studies justify the L. killicki denomination. Conclusions: These findings provided taxonomic and phylogenetic informations on L. killicki and helped to better know the evolutionary history of this taxon

    Geographical distribution and epidemiological features of Old World Leishmania infantum and Leishmania donovani foci, based on the isoenzyme analysis of 2277 strains

    Get PDF
    A series of 2277 Leishmania strains from Old World visceral leishmaniasis foci, isolated between 1973 and 2008, were studied by isoenzyme analysis. The strains were obtained from humans, domestic and wild carnivores, rodents and phlebotomine sandflies, and came from 36 countries. In all, 60 different zymodemes were identified and clustered by a phenetic analysis into 3 different groups corresponding to the typically visceralizing species L. donovani (20 zymodemes, 169 strains), L. archibaldi (3 zymodemes, 46 strains) and L. infantum (37 zymodemes, 2,062 strains). The taxonomic position of these isoenzymatic groups is discussed in view of contradictory results obtained from recent molecular studie

    The Leishmania donovani species complex: A new insight into taxonomy.

    Full text link
    Among the 20 or so Leishmania spp. described as pathogenic for humans, those of the Leishmania donovani complex are the exclusive causative agents of systemic and fatal visceral leishmaniasis. Although well studied, the complex is taxonomically controversial, which hampers clinical and epidemiological research. In this work, we analysed 56 Leishmania strains previously identified as L. donovani, Leishmania archibaldi or Leishmania infantum, isolated from humans, dogs and sandfly vectors throughout their distribution area. The strains were submitted to biochemical and genetic analyses and the resulting data were compared for congruence. Our results show: i) a partial concordance between biochemical and genetic-based data, ii) very limited genetic variability within the L. donovani complex, iii) footprints of frequent genetic exchange along an east-west gradient, marked by a widespread diffusion of alleles across the geographical range, and iv) a large-scale geographical spreading of a few genotypes. From a taxonomic point of view, considering the absence of relevant terminology in existing classes, the L. donovani complex could be treated as a single entit

    The m 6 A pathway protects the transcriptome integrity by restricting RNA chimera formation in plants

    Get PDF
    International audienceGlobal, segmental, and gene duplication-related processes are driving genome size and complexity in plants. Despite their evolutionary potentials, those processes can also have adverse effects on genome regulation, thus implying the existence of specialized corrective mechanisms. Here, we report that an N6-methyladenosine (m 6 A)-assisted polyadenylation (m-ASP) pathway ensures tran-scriptome integrity in Arabidopsis thaliana. Efficient m-ASP pathway activity requires the m 6 A methyltransferase-associated factor FIP37 and CPSF30L, an m 6 A reader corresponding to an YT512-B Homology Domain-containing protein (YTHDC)-type domain containing isoform of the 30-kD subunit of cleavage and polyadenylation specificity factor. Targets of the m-ASP pathway are enriched in recently rearranged gene pairs, displayed an atypical chromatin signature, and showed transcriptional readthrough and mRNA chimera formation in FIP37-and CPSF30L-deficient plants. Furthermore, we showed that the m-ASP pathway can also restrict the formation of chimeric gene/transposable-element transcript, suggesting a possible implication of this pathway in the control of transposable elements at specific locus. Taken together, our results point to selective recognition of 39-UTR m 6 A as a safeguard mechanism ensuring transcriptome integrity at rearranged genomic loci in plants

    Outbreak of Leishmania braziliensis cutaneous leishmaniasis, Saül, French Guiana [letter]

    Get PDF
    New World cutaneous leishmaniasis (CL), a zoonotic disease, is increasingly seen among travelers returning from Latin American countries, particularly from Bolivia, Belize, and French Guiana (1). The epidemiology of CL in the Americas is heterogeneous and has complex variations in transmission cycles, reservoir hosts, and sandfly vectors. Changing human activities that affect these factors may have resulted in the emergence of species with distinct pathogenic potentials and responses to therapy. In the Guianan ecoregion complex, leishmaniasis is endemic, and 5 coexisting Leishmania parasite species are known to infect humans: L. guyanensis, L. braziliensis, L. amazonensis, L. naiffi, and L. lainsoni. Among these species, L. guyanensis accounts for ≈85% of CL cases (2). We report an outbreak of 7 cases of L. braziliensis CL that occurred among 24 scientists who participated in a field mission at Limonade Creek in Saül, French Guiana, during October 10–25, 2013. Saül is an isolated village in the Amazonian rainforest (3°55′18′′N, 53°18′02′′W)

    Genetic, serological and biochemical characterization of Leishmania tropica from foci in northern Palestine and discovery of zymodeme MON-307

    Get PDF
    Background Many cases of cutaneous leishmaniasis (CL) have been recorded in the Jenin District based on their clinical appearance. Here, their parasites have been characterized in depth. Methods Leishmanial parasites isolated from 12 human cases of CL from the Jenin District were cultured as promastigotes, whose DNA was extracted. The ITS1 sequence and the 7SL RNA gene were analysed as was the kinetoplast minicircle DNA (kDNA) sequence. Excreted factor (EF) serotyping and multilocus enzyme electrophoresis (MLEE) were also applied. Results This extensive characterization identified the strains as Leishmania tropica of two very distinct sub-types that parallel the two sub-groups discerned by multilocus microsatellite typing (MLMT) done previously. A high degree of congruity was displayed among the results generated by the different analytical methods that had examined various cellular components and exposed intra-specific heterogeneity among the 12 strains. Three of the ten strains subjected to MLEE constituted a new zymodeme, zymodeme MON-307, and seven belonged to the known zymodeme MON-137. Ten of the 15 enzymes in the profile of zymodeme MON-307 displayed different electrophoretic mobilities compared with the enzyme profile of the zymodeme MON-137. The closest profile to that of zymodeme MON-307 was that of the zymodeme MON-76 known from Syria. Strains of the zymodeme MON-307 were EF sub-serotype A2 and those of the zymodeme MON-137 were either A9 or A9B4. The sub-serotype B4 component appears, so far, to be unique to some strains of L. tropica of zymodeme MON-137. Strains of the zymodeme MON-137 displayed a distinctive fragment of 417 bp that was absent in those of zymodeme MON-307 when their kDNA was digested with the endonuclease RsaI. kDNA-RFLP after digestion with the endonuclease MboI facilitated a further level of differentiation that partially coincided with the geographical distribution of the human cases from which the strains came. Conclusions The Palestinian strains that were assigned to different genetic groups differed in their MLEE profiles and their EF types. A new zymodeme, zymodeme MON-307 was discovered that seems to be unique to the northern part of the Palestinian West Bank. What seemed to be a straight forward classical situation of L. tropica causing anthroponotic CL in the Jenin District might be a more complex situation, owing to the presence of two separate sub-types of L. tropica that, possibly, indicates two separate transmission cycles involving two separate types of phlebotomine sand fly vector

    Genome size diversity in angiosperms and its influence on gene space

    Get PDF
    Genome size varies c. 2400-fold in angiosperms (flowering plants), although the range of genome size is skewed towards small genomes, with a mean genome size of 1C = 5.7 Gb. One of the most crucial factors governing genome size in angiosperms is the relative amount and activity of repetitive elements. Recently, there have been new insights into how these repeats, previously discarded as ‘junk’ DNA, can have a significant impact on gene space (i.e. the part of the genome comprising all the genes and gene-related DNA). Here we review these new findings and explore in what ways genome size itself plays a role in influencing how repeats impact genome dynamics and gene space, including gene expression
    corecore