5 research outputs found

    Nigral proteasome inhibition in mice leads to motor and non-motor deficits and increased expression of Ser129 phosphorylated α-synuclein

    Get PDF
    Parkinson's disease is a neurodegenerative disorder characterized by motor and non-motor disturbances. Various pathogenic pathways drive disease progression including oxidative stress, mitochondrial dysfunction, α-synuclein aggregation and impairment of protein degradation systems. Dysfunction of the ubiquitin-proteasome system in the substantia nigra of Parkinson's disease patients is believed to be one of the causes of protein aggregation and cell death associated with this disorder. Lactacystin, a potent inhibitor of the proteasome, was previously delivered to the nigrostriatal pathway of rodents to model nigrostriatal degeneration. Although lactacystin-treated animals develop parkinsonian motor impairment, it is currently unknown whether they also develop non-motor symptoms characteristic of this disorder. In order to further describe the proteasome inhibition model of Parkinson's disease, we characterized the unilateral lactacystin model, performed by stereotaxic injection of the toxin in the substantia nigra of mice. We studied the degree of neurodegeneration and the behavioral phenotype 1 and 3 weeks after lactacystin lesion both in terms of motor impairment, as well as non-motor symptoms. We report that unilateral administration of 3 μg lactacystin to the substantia nigra of mice leads to partial (~40%) dopaminergic cell loss and concurrent striatal dopamine depletion, accompanied by increased expression of Ser129-phosphorylated α-synuclein. Behavioral characterization of the model revealed parkinsonian motor impairment, as well as signs of non-motor disturbances resembling early stage Parkinson's disease including sensitive and somatosensory deficits, anxiety-like behavior, and perseverative behavior. The consistent finding of good face validity, together with relevant construct validity, warrant a further evaluation of proteasome inhibition models of Parkinson's disease in pre-clinical research and validation of therapeutic targets.status: publishe

    Nigral proteasome inhibition in mice leads to motor and non-motor deficits and increased expression of Ser129 phosphorylated α-synuclein

    No full text
    Parkinson’s disease is a neurodegenerative disorder characterized by motor and non-motor disturbances. Various pathogenic pathways drive disease progression including oxidative stress, mitochondrial dysfunction, α-synuclein aggregation and impairment of protein degradation systems. Dysfunction of the ubiquitin-proteasome system in the substantia nigra of Parkinson’s disease patients is believed to be one of the causes of protein aggregation and cell death associated with this disorder. Lactacystin, a potent inhibitor of the proteasome, was previously delivered to the nigrostriatal pathway of rodents to model nigrostriatal degeneration. Although lactacystin-treated animals develop parkinsonian motor impairment, it is currently unknown whether they also develop non-motor symptoms characteristic of this disorder. In order to further describe the proteasome inhibition model of Parkinson’s disease, we characterized the unilateral lactacystin model, performed by stereotaxic injection of the toxin in the substantia nigra of mice. We studied the degree of neurodegeneration and the behavioral phenotype one and three weeks after lactacystin lesion both in terms of motor impairment, as well as non-motor symptoms. We report that unilateral administration of 3 µg lactacystin to the substantia nigra of mice leads to partial (~40%) dopaminergic cell loss and concurrent striatal dopamine depletion, accompanied by increased expression of Ser129-phosphorylated α-synuclein. Behavioral characterization of the model revealed parkinsonian motor impairment, as well as signs of non-motor disturbances resembling early stage Parkinson’s disease including sensitive and somatosensory deficits, anxiety-like behavior, and perseverative behavior. The consistent finding of good face validity, together with relevant construct validity, warrant a further evaluation of proteasome inhibition models of Parkinson’s disease in pre-clinical research and validation of therapeutic targets

    Accelerated high-frequency repetitive transcranial magnetic stimulation enhances motor activity in rats

    Get PDF
    High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is currently accepted as an evidence-based treatment option for treatment-resistant depression (TRD). Additionally, HF-rTMS showed beneficial effects on psychomotor retardation in patients. The classical HF-rTMS paradigms however are unlikely to replace electroconvulsive therapy, a more potent alternative for TRD albeit with important side-effects. Therefore, recent studies have investigated 'accelerated' HF-rTMS protocols demonstrating promising clinical responses in patients with TRD. Since the neuronal effects of accelerated HF-rTMS are underinvestigated, we evaluate here the possible metabolic and neurochemical effects of this treatment alternative. More specifically, we measured the effect on brain glucose metabolism and monoamines/metabolites, as well as on the spontaneous motor activity in rats. We found that brain glucose metabolism and monoamines remained generally unaffected after accelerated HF-rTMS, with the exception of reduced total striatal 5-hydroxyindolacetic acid (a metabolite of serotonin) levels. Interestingly, when compared to sham stimulation, the velocity, the total distance traveled as well as the percentage of movement, as measured by the open-field test, were significantly enhanced after accelerated HF-rTMS showing an increased motor activity. Our current results indicate that the accelerated HF-rTMS-induced increase in motor activity in rats, may be related to the striatal neurochemical effect. (C) 2017 IBRO. Published by Elsevier Ltd. All rights reserved
    corecore