166 research outputs found

    Stoichiometry of Polymer Complexes

    Get PDF

    Synthesis and Properties of Complexes of Copper(II), Nickel(II), Cobalt(II) and Uranyl Ions with 3-(p-Tolylsulphonamido)rhodanine

    Get PDF
    Metal complexes of copper(II), nickel(II), cobalt(II), uranyl(II) with 3-(p-tolylsulphonamido)rhodanine (HL) have been prepared and characterized by chemical and thermal analyses, molar conductivity, magnetic susceptibility measurements, and infrared, electronic and EPR spectra. The visible and EPR spectra indicated that the Cu(II) complex has a tetragonal geometry. From EPR spectrum of the Cu(II) complex, various parameters were calculated. The crystal field parameters of Ni(II) complex were calculated and were found to agree fairly well with the values reported for known square pyramidal complexes. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and nitrogen donor system. Thermal stabilities of the complexes are also reported

    Metal Complexes of Multidentate N2S2 Heterocyclic Schiff-base Ligands;Formation, Structural Characterisation and Biological Activity

    Get PDF
    The synthesis of ligands with N2S2 donor sets that include imine, an amide, thioether, thiolate moieties and their metal complexes were achieved. The new Schiff-base ligands; N-(2-((2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio)-acetamide (H2L1) and N-(2-((2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio) acetamide (H2L2) were obtained from the reaction of amine precursors with 1,4-dithian-2-one in the presence of triethylamine as a base in the CHCl3 medium. Complexes of the general formula K2[M(Ln)Cl2], (where: M = Mn (II), Co(II) and Ni(II)) and [M(Ln)], (where: M = Cu(II), Zn(II) and Cd(II); n =1-2, expect [Cu(HL2)Cl]) were isolated. The entity of ligands and complexes including their purity were confirmed using elemental microanalysis (C.H.N.S), atomic absorption (A.A), chloride content, conductivity measurement's, melting point and thermal analysis technique. The molecular structures were elucidated with FT-IR, UV-Vis, magnetic susceptibility, 1H-and 13C-NMR and mass spectroscopy. The synthesised compounds were evaluated for their activity against bacterial strains (G+ and G-) and fungi species. The tested compounds indicated that; the ligands have not shown any antimicrobial activity against Escherichia coli. The Cd(II) complexes, for ligands H2L1 and H2L2, display the higher antimicrobial activity, compared with the other complexes. The H2L1 and H2L2 have not shown any activity against Candida albicans. All complexes for ligands (H2L1 and H2L2) exhibited less activity against Candida albicans, compared with other types of fungi
    • 

    corecore