3 research outputs found

    Activated low-density granulocytes in peripheral and intervillous blood and neutrophil inflammation in placentas from SLE pregnancies

    Get PDF
    Objective Women with SLE face an increased risk of adverse pregnancy outcomes compared with healthy women, but the underlying immunological mechanisms are unknown. Given the recognised association of neutrophil activation with SLE pathogenesis, we examined whether there is increased neutrophil activation and inflammation in blood and placenta in SLE relative to healthy pregnancy. Methods At delivery, peripheral blood, maternal-derived intervillous blood and placentas were collected from 12 SLE and 10 healthy control pregnancies. The proportion of low-density granulocytes (LDGs) and the activation status of LDG and normal-density granulocytes were examined with flow cytometry. The chemokines CXCL8 and CXCL1 were quantified with a cytometric bead-based assay and interferon alpha (IFN alpha) protein levels with a Simoa method. IFN alpha-stimulated maternal-derived decidual stromal cells were examined for CXCL8 gene expression with qPCR. A pathologist, blinded to the patient background, examined all placentas. Results Women with SLE had significantly higher proportions of LDG in peripheral blood compared with controls (p=0.02), and LDG in both peripheral and intervillous blood were more activated in SLE relative to healthy pregnancies (peripheral blood: p=0.002 and intervillous blood: p=0.05). There were higher levels of CXCL8 and CXCL1 in intervillous compared with peripheral blood in women with SLE (p=0.004 and p=&amp;lt;0.0001, respectively) but not in controls. In SLE pregnancy, IFN alpha was detectable in 6 out of 10 intervillous blood samples but only in one control. Stimulation with IFN alpha upregulated CXCL8 gene expression in decidual stromal cells from both SLE and healthy pregnancy. Histological chorioamnionitis was present in 6 out of 12 placentas from women with SLE and in 1 out of 10 controls. Conclusions In women with SLE, locally produced chemokines in the placenta are increased and may attract and activate neutrophils. This in turn could contribute to placental inflammation and dysfunction and increased risk of placenta-related pregnancy complications.Funding Agencies|Swedish government; county councils; ALF agreement; Swedish Rheumatism Association; Gothenburg Society of Medicine; Ingegerd Johanssons Donation; foundations of King Gustaf Vs 80th Anniversary; Queen Victorias Freemasons; Swedish Research CouncilSwedish Research CouncilEuropean Commission</p

    Active conventional treatment and three different biological treatments in early rheumatoid arthritis: phase IV investigator initiated, randomised, observer blinded clinical trial

    Get PDF
    OBJECTIVE To evaluate and compare benefits and harms of three biological treatments with different modes of action versus active conventional treatment in patients with early rheumatoid arthritis. DESIGN Investigator initiated, randomised, open label, blinded assessor, multiarm, phase IV study. SETTING Twenty nine rheumatology departments in Sweden, Denmark, Norway, Finland, the Netherlands, and Iceland between 2012 and 2018. PARTICIPANTS Patients aged 18 years and older with treatment naive rheumatoid arthritis, symptom duration less than 24 months, moderate to severe disease activity, and rheumatoid factor or anti-citrullinated protein antibody positivity, or increased C reactive protein. INTERVENTIONS Randomised 1:1:1:1, stratified by country, sex, and anti-citrullinated protein antibody status. All participants started methotrexate combined with (a) active conventional treatment (either prednisolone tapered to 5 mg/day, or sulfasalazine combined with hydroxychloroquine and intraarticular corticosteroids), (b) certolizumab pegol, (c) abatacept, or (d) tocilizumab. MAIN OUTCOME MEASURES The primary outcome was adjusted clinical disease activity index remission (CDAI &amp;lt;= 2.8) at 24 weeks with active conventional treatment as the reference. Key secondary outcomes and analyses included CDAI remission at 12 weeks and over time, other remission criteria, a non-inferiority analysis, and harms. RESULTS 812 patients underwent randomisation. The mean age was 54.3 years (standard deviation 14.7) and 68.8% were women. Baseline disease activity score of 28 joints was 5.0 (standard deviation 1.1). Adjusted 24 week CDAI remission rates were 42.7% (95% confidence interval 36.1% to 49.3%) for active conventional treatment, 46.5% (39.9% to 53.1%) for certolizumab pegol, 52.0% (45.5% to 58.6%) for abatacept, and 42.1% (35.3% to 48.8%) for tocilizumab. Corresponding absolute differences were 3.9% (95% confidence interval -5.5% to 13.2%) for certolizumab pegol, 9.4% (0.1% to 18.7%) for abatacept, and -0.6% (-10.1% to 8.9%) for tocilizumab. Key secondary outcomes showed no major differences among the four treatments. Differences in CDAI remission rates for active conventional treatment versus certolizumab pegol and tocilizumab, but not abatacept, remained within the prespecified non-inferiority margin of 15% (per protocol population). The total number of serious adverse events was 13 (percentage of patients who experienced at least one event 5.6%) for active conventional treatment, 20 (8.4%) for certolizumab pegol, 10 (4.9%) for abatacept, and 10 (4.9%) for tocilizumab. Eleven patients treated with abatacept stopped treatment early compared with 20-23 patients in the other arms. CONCLUSIONS All four treatments achieved high remission rates. Higher CDAI remission rate was observed for abatacept versus active conventional treatment, but not for certolizumab pegol or tocilizumab versus active conventional treatment. Other remission rates were similar across treatments. Non-inferiority analysis indicated that active conventional treatment was non-inferior to certolizumab pegol and tocilizumab, but not to abatacept. The results highlight the efficacy and safety of active conventional treatment based on methotrexate combined with corticosteroids, with nominally better results for abatacept, in treatment naive early rheumatoid arthritis.Funding Agencies|Academy of FinlandAcademy of Finland [258536]; Finska Lakaresallskapet; South-Eastern Health Region, Norway, HUCH Institutional grant, Finland [1159005]; Icelandic Society for Rheumatology; interregional grant from all health regions in Norway; NordForsk [70945]; Regionernes Medicinpulje, Denmark [14/217]; Stockholm County Council, SwedenStockholm County Council [20100490]; Swedish Medical Research CouncilSwedish Medical Research Council (SMRC) [C0634901, D0342301, 2015-00891_5]; Swedish Rheumatism Association; Research Fund of University Hospital, Reykjavik, Iceland [A2015017]</p
    corecore